
Archived Material

Historical Purposes Only

Workshop on Software Tools for HPC Systems

Final Report

In October 1996, we organized the sixth in a series of workshops on software tools for high-performance

computing. With funding from the DoE, NASA, NSF, and DARPA, the goal of this workshop was to

explore the feasibility of creating a national software tool testing and evaluation center.

 Table of Contents:

 Executive Summary

 Background and Motivations

 Workshop Context

 Workshop Attendees and Student Participation

 Workshop Discussion Groups

 Workshop Group Summaries

 Workshop Recommendations

 Summary

 References

 Appendix A: Workshop Agenda

 Appendix B: Working Group Reports

 Technical challenges: performance tools

 Management issues for a software tools center

 center software selection and vendor participation

 Intellectual property issues

 center technical Infrastructure

 Technical issues: debugging

 Organizers

Ann Hayes

Computing & Communications Division

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Jeffrey Brown

Computing & Communications Division

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Margaret L. Simmons

National Coordination Office

4201 Wilson Boulevard

Arlington, Virginia 22230

Daniel A. Reed

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

Executive

Summary

In October 1996, we organized the sixth in a series of workshops on software tools for high-

performance computing. With funding from the Department of Energy, the National Aeronautics

and Space Administration, the National Science Foundation, and the Defense Advanced

Research Projects Agency, the goal of this workshop was to explore the feasibility of creating a

national software tool testing and evaluation center. The workshop and its theme were motivated

by a growing realization that the small size of the high-performance computing market and the

rapid pace of technological change have rendered traditional mechanisms for software

technology transfer ineffective.

Despite continued requests from users, both hardware vendors and independent software

developers see little financial incentive for software tool development; tool development costs

simply cannot be amortized across sales of tens of high-end systems. Similarly, the research

community lacks the financial resources to harden and support valued research prototypes for a

large external user base. A software testing and evaluation center offers a possible solution to

this conundrum. By identifying and supporting promising software prototypes, a center could

serve as a conduit for technology transfer to vendors and as a support center for valued, though

not commercially viable, software tools.

To explore the issues surrounding possible creation of a software testing and evaluation center,

roughly 100 participants, drawn from academia, government, and industry, met for three days in

October 1996 at Cape Cod. The workshop was organized as a sequence of sessions that

included invited presentations and extensive, directed discussion periods. In turn, the invited

presentations were structured as a mix of technical summaries of current software tool research

issues and reviews of software tool distribution mechanisms. The discussion periods focused on

both new research problems in debugging and performance analysis and on the organizational

structure of a possible software testing and evaluation center.

The workshop participants all agreed that collaboratively developing robust, user-friendly

performance tools for high-performance parallel systems is expensive and intellectually

challenging. Moreover, effective tool development requires many mundane activities not normally

associated with academic computer science research, namely testing early prototypes with

friendly users who are application scientists, developing and testing intuitive user interfaces, and

writing manuals and documentation.

The workshop attendees concluded that a creating a national, though distributed software tool

evaluation and testing center was the only practical solution to the HPCC software tool crisis. Co-

located with extant HPCC centers and organized as a cooperating group of developers and

support staff, the proposed center would work with academic researchers, application scientists,

and vendors to evaluate and test prototype software tools. The center staff would "harden" and

support modest number of prototype tools, creating documentation, porting software to multiple

platforms, and fostering standard interfaces for tool interoperability.

By organizing the center as a set of cooperating groups at HPCC sites, the center structure would

capitalize on diverse resources and users and, ideally, capture the best features of current

distributed centers. Moreover, the center would fill an important gap between the generation of

ideas by the research community and consortia like the Parallel Tools (PTOOLS) group and the

dissemination of software by the National High-Performance Software Exchange (NSHE).

Background

and

Motivations

Though fierce vendor competition for a share of the High-Performance Computing and

Communications (HPCC) market has led to rapid architectural innovation and higher peak

hardware performance, the software infrastructure for massively parallel systems has not kept

pace with the rapid evolution of new parallel architectures. The pace of hardware innovation has

stretched academic, laboratory, and vendor software development groups to the limit, forcing

them to continually create software tools for changing programming models and new hardware

environments.

The critical importance of robust, flexible, and efficient software tools has long been recognized

and has been a major discussion topic at several national HPCC meetings, including those in

Pasadena [3,4] and Pittsburgh [9] and at a series of workshops on software tools hosted by the

authors [6,7,8]. These meetings focused on the intellectual difficulties associated with building

good tools and, equally importantly, the lack of incentives and infrastructure for tool development

and testing.

Research ideas can be explored with a small cadre of graduate students, but building robust tools

requires both experience with real user needs and a major development effort. Small profit

margins and short product life cycles, both leading to small installed product bases, have made it

extraordinarily difficult for tool developers to gain the needed experience with user software

development idioms and to create and support effective tools.

By necessity, tools embody knowledge of the execution environment, identifying performance

bottlenecks or logical program errors in terms of application code constructs and their interaction

with the execution environment. Because the root causes of poor performance or unexpected

program behavior may lie with run-time libraries, compilers, the operating system, or the

hardware, tools must gather and correlate information from many sources. Not only does this

correlation require interfaces for information access, the need for such information is most often

gained only from experience. Experience comes with time, as tool developers understand the

common programming idioms, the interactions of application code and the underlying hardware

and software, and the user interfaces best suited for relating these interactions in intuitive ways.

Simply put, developing good tools takes time, experience and substantial effort; small profit

margins and short product life cycles, both leading to small installed product bases, have made it

extraordinarily difficult for tool developers to create and support effective tools.

Poor Software Tools: An Old Problem

Is the dearth of effective software tools a new problem? No, the lack of good software

development tools can be traced to the very origins of high-performance computing (e.g., early

CDC FORTRAN compilers were very inefficient, and the Cray 1 was delivered with essentially no

software). However, as high-performance systems have become more widely available and

accessible, the long-standing lack of tools has become more evident. More perniciously, the

ferment in the HPCC market has led to short product life cycles, with vendors and application

developers repeatedly moving to new architectures and programming models. Often, by the time

system software has sufficiently stabilized and there is sufficient knowledge of common

programming idioms to permit construction of robust and useful tools, the underlying hardware is

no longer performance competitive.

Finally, the burgeoning personal computer market continues to raise user expectations to ever

higher levels. The widespread availability of high quality, inexpensive desktop software leads

users to (a) question the lack of similar tools on high-performance systems and (b) expect

interoperability between desktop tools and those on high-performance systems.

In short, the software infrastructure for massively parallel systems has been unable to keep pace

with the rapid evolution of new parallel architectures. The paucity of basic software tools for

application program development, debugging, and performance tuning has limited the use of

scalable parallel systems to a small cadre of hardy pioneers willing to brave a wilderness of

experimental hardware, immature software, and frequently changing tools.

Substantial research money is directed toward study and development of software tools, but as

Pancake asked at our 1993 workshop on performance tools, Why don't users use the tools that

tool developers develop?" The workshop attendees agreed that the fundamental reasons for this

dilemma relate to the lack of incentives for tool development and testing.

First, the massively parallel systems market is small, and the real cost of commercial tool

development is high. As vendors prioritize development of new systems, functioning hardware,

operating systems and compilers receive the highest priority, for machines cannot be shipped

without these. However, competitive pressures and development schedule slippage often lead

vendors to ship their new systems prematurely, before other infrastructure such as software

development tools can be created. Due to these pressures on vendors to ship, the temptation is

very high for them to simply "repackage'' internal development tools for external use, even when

inappropriate for users.

From a financial perspective, developing robust software tools for a parallel system with projected

sales of 500 units is nearly as costly as developing software for the burgeoning personal

computer market, but without concomitant financial incentives. These same economics preclude

creation of a viable third party software industry (i.e., the independent software vendors (ISVs)).

One of the workshop working groups addressed the implications of market size for tool

development.

Second, another potential source of software tools, the academic and laboratory research

community, lacks the reward structure, the financial resources, and (often) the skills to develop

and support robust software tools. The academic computer science community is rewarded, both

tangibly and intangibly, for development of software prototypes and publication of the ideas

underlying these, but not for the additional development needed to make these prototypes really

usable by the larger HPCC community. Moreover, because there is limited interaction between

academic tool developers and potential tool users, prototype tools often lack important features or

are simply not useful to application developers.

Although there are a plethora of reasons for this situation, most are subsumed under the rubric of

limited collaboration and funding. Inappropriate tools often result because application developers,

tool developers, and vendors are not intimate collaborators in the tool development process;

current academic and commercial realities do not reward such collaboration. Moreover, vendors

are reluctant to embrace, extend, and market academic software unless it is already robust, as

evidenced by wide use within the application community. Finally, an undue emphasis on peak

hardware performance, at the frequent expense of sustained, readily achievable performance,

leads to rapid changes in hardware and system software.

Poor Software Tools: A Worsening Problem

In many senses, the software tool dilemma is worsening. The World Wide Web, distributed

metacomputing, and new parallel programming models all pose unsolved problems for software

tools. Tools for task and data parallel languages, techniques for real-time adaptive system

control, and optimization of heterogeneous metacomputing applications. are all united by the

need for greater access to system internals and data and by the need for standard interfaces,

both internally and for users.

Historically, performance and debugging tools have been developed independently of system

software and compilers. This separation reflects both the integration of software from disparate

sources (i.e., third party compilers and operating system kernels) and limited support provided by

software systems for tool development. For example, operating systems typically provide

debugger developers little more than a UNIX ptrace system call for controlling process execution

and performance tool developers only a mechanism for accessing a coarse-resolution system

clock. Similarly, compilers provide simple symbol table information in object files. For single

processor systems, these features are sufficient to build breakpoint debuggers and profilers,

though they are far from optimal. For parallel systems and workstation clusters, they are woefully

inadequate.

At present, few compilers provide access to program transformation data, though debugging and

tuning the performance of programs written in task and data parallel languages (e.g., like High-

Performance FORTRAN (HPF) [2]) requires both compile-time and run-time data. Relating the

dynamic behavior of compiler-synthesized code to the user's source code requires knowledge of

the program transformations applied by the compiler and the code generation model. For

example, if an HPF compiler generates message passing code for a distributed memory system,

understanding how messages relate to array locality is a key to improving performance. Moving

beyond tools for explicit parallelism (e.g., via message passing) will require far tighter integration

of tools with compilers.

Likewise, few operating systems or run-time libraries provide mechanisms for selecting resource

management policies or for configuring those policies based on knowledge of application

resource demands or dynamic performance data. However, many experiments have shown that

tuning policies to application behavior is key to improving performance for irregular applications

with complex behavioral dynamics. For example, as part of the Scalable I/O Initiative, researchers

have shown that selecting and configuring file system input/output policies to match application

input/output patterns and hardware configurations can dramatically increase achievable

application input/output performance.

The explosion of World Wide Web (WWW) use, together with rapidly expanding interests in

distributed data mining and heterogeneous parallel computing, pose a different, though equally

thorny, set of tool research problems. New types of debugging and performance tuning tools will

be needed to create metacomputing applications that can exploit distributed computation

resources (e.g., by distributing a computation across multiple, geographically dispersed parallel

systems) and that can mine large data archives in response to complex queries. Measuring

network latencies and bandwidths and adapting to changes in network loads will necessitate

integration of "standard" tools for parallel systems with distributed network management

mechanisms (e.g., like the Simple Network Management Protocol (SNMP)).

Support for new programming models, tuning of resource management policies, and

management of distributed metacomputations requires interfaces and access to data not readily

available via present methods. This will require creation of a new generation of performance

analysis and debugging tools that are more tightly coupled with runtime libraries, operating

systems, and compilers. In turn, this greatly exacerbates current software tool development

problems (i.e., access to data and software interfaces).

Workshop

Context

Recognition of the technical, economic, and sociological problems facing the high-performance

computing community motivated us to organize a series of workshops on software tools. The

most recent workshop was the sixth in a series of workshops organized by Los Alamos National

Laboratory and the University of Illinois. Begun in 1988, these workshops have evolved from an

initial focus on the technology and research issues underlying creation of performance and

debugging tools to an assessment of the technical, political, and economic constraints on high-

performance computing software tools. Simply put, the goal of the workshop series is to address

the changing roles and expectations for software tools in the high-performance computing and

communications domain.

The first workshop, held in 1988, occurred just as the national High-Performance Computing and

Communication (HPCC) program began. At that time, massively parallel systems were the

emerging future of high-performance computing, rather than a current reality. A substantial

fraction of the first workshop was devoted to directed discussions of performance instrumentation

problems on three broad classes of parallel systems architectures: shared memory, distributed

memory, and data flow. During these discussions, vendors, academics, and users spoke frankly

and at length about the problems they faced and possible solutions [6].

A second workshop was held in 1989 [8]. Here, researchers described the functionality of

prototype performance tools and discussed initial experiences applying the tools in real execution

contexts. The third workshop, held in 1991, focused on issues of performance measurement,

data analysis, and visualization as they related to large-scale parallel systems. By this juncture,

real systems had appeared and were being actively used by a growing cadre of software

developers.

Reflecting practical experience with software tools and market pressures faced by HPCC

vendors, the fourth workshop, held in 1993, shifted its focus to the interplay between technical

issues and software "success." The workshop brought together application software developers

and tool developers to engage in an exchange of ideas on what are necessary, possible and

appropriate performance tools for massively parallel systems. The predominant theme that

emerged from the workshop was that software tools, both performance and debugging, were

neither widely available nor widely used and that this fact was adversely affecting the entire high-

performance computing community.

Finally, the fifth workshop, held in 1994, combined both debugging and performance tool groups

[7]. Building on the concerns of the previous workshop, the participants were united in their belief

that the only practical solution to the paucity of effective software tools for high-performance

systems was a community effort to create a software tool testing center. Such a center would

work with academic researchers, application scientists, and high-performance computer vendors

to evaluate, test, and enhance prototype software tools. In addition, the center would foster both

industry standards for tool interoperability and technology transfer of mature software prototype.

The sixth workshop, summarized in this report, was convened to explore the technical and

logistical organization of a possible software testing and evaluation center. The speakers and

technical working group topics were chosen to explore these issues in detail. The workshop

began with a keynote presentation by Ken Kennedy on technology transfer paths for HPCC

software. The talk discussed the "standar"d model of technology push from research groups to

both computing vendors and independent software vendors (ISVs) and the economic conditions

that have limited its success. Dan Reed then discussed his experiences with software technology

transfer, which echoed Kennedy's comments. He then summarized the recommendations of the

fifth workshop and its rationale for a possible software testing and evaluation center. Following

this, he outlined the organizers' charges to six workshop discussion groups.

Attendees

and Student

Participation

To explore the issues surrounding possible creation of a software testing and evaluation center,

roughly 100 participants, drawn from academia, government, and industry, were invited to attend

the workshop. One of the most successful components of the workshop was the inclusion of

graduate students. With support from NSF, we invited software tool researchers and one of their

graduate students to attend the workshop as a pair. Each student participated fully in the

workshop and its discussion groups and also presented a poster on their work at the evening

reception.

By involving students in the discussion, we hoped that new research relationships would be

established, not only among the researchers, but also among the students. These students are

the next generation of computational and computer scientists. It is critical that they form close

working relationships; the days when computer science and computational science developed in

isolation are past.

Workshop

Discussion

Groups

Because we have long felt the primary purpose of a workshop should be discussion, not passive

listening, roughly half the workshop was devoted to organized discussion via a set of six working

groups. Each working group was charged to consider either specific technical issues related to

HPCC software tools or a particular set of issues related to organization of a software testing

center. These groups addressed the following issues:

  Technical challenges for performance tools

What are the most successful current performance tools today and what are their

characteristics? What performance tools will be needed for emerging programming

models and new hardware environments such as teraflop and petaflop computing and

distributed network computing?

 Management issues for a software center

What are the mission, goals and objectives of a center? Would the center be

centralized, distributed, or virtual and how would it be managed in each of these

cases?

 Software selection and vendor involvement

What selection criteria should be used to identify the software to be developed at the

center? How might vendors participate in the center's activities and benefit from the

center's accomplishments?

 Intellectual property issues

What are the legal/ethical responsibilities, intellectual ownership, and liability issues

that must be addressed to establish a software testing center?

 Technical Infrastructure

What technical components (i.e., software, hardware, and staff) would be required by a

center? How would the center function and transfer technology?

 Technical challenges for debuggers

What should be the role of a tools center to encourage the development and accelerate

the deployment of high quality parallel debuggers for high performance computing?

Working

Group

Summaries

The appendices to this report contain the analyses of these and other questions as reported by

the working groups. Below, we summarize the key points of each working group and the general

themes that emerged from the workshop discussions.

Technical Issues (Performance Tools and Debuggers): Working groups one and six considered

the technical problems faced by performance tool and debugging researchers, particularly as

software tools evolve from homogeneous parallel systems to include distributed collections of

heterogeneous systems. The performance tool group reiterated the observation that there is no

single model of successful tool development and deployment. Instead, tools evolve in a variety of

ways and originate from many sources. In consequence, they suggested that a software testing

center should not supplant current mechanisms for tool development and funding, but rather

should augment it by evaluating and enhancing research prototypes. They further noted that the

primary challenges faced by performance tool developers are heterogeneity, hierarchy, and

scale. The emergence of metacomputing, of scalable systems with thousands of processors (e.g.,

as in the Department of Energy Accelerated Strategic Computing Initiative (ASCI) systems), and

of hierarchical shared memory systems and data parallel programming models all pose new

problems for performance tool designers.

The debugging working group noted that debugger designers face daunting and conflicting goals:

the need to report environment-specific data while also providing a portable, extensible interface.

The lack of accepted standards for user interfaces exacerbates tool development and frustrates

users who regularly use multiple systems. The group felt that a software testing and evaluation

center should foster understanding of user and developer needs via workshops and usability

testing. Moreover, the center should encourage standardization, test and evaluate prototypes with

real users, and reduce the effort required for vendors and academic researchers to create usable

tools. Finally, a center should support useful tools on standard platforms.

center Management Issues: Working group two explored possible management and

organizational structures for a testing and evaluation center. The group took as its working

hypothesis the belief that the centerÍs goals should be to collect, evaluate, enhance, and support

key software tools that have minimal potential for commercialization due to market size. The

group felt that this hypothesis implied that the center would necessarily focus on a modest

number of prototype tools that had established users and that were sufficiently robust to make

extension and testing feasible.

The working group also considered possible management structures for the center. After

discussion, the group concluded that the center should incorporate the best features of the

distributed NSF center for Research on Parallel Computation (CRPC) and the Corporation for

National Research Initiatives (CNRI). The CRPC model for the center would create a distributed

set of collaborating partners to evaluate and enhance selected prototype tools. In contrast, a

CNRI model would emphasize a small core staff responsible for establishing mini-consortia to

evaluate, enhance, and maintain prototypes. Both models have similar goals, differing primarily in

the mechanism for forming partners. The group felt that the center should have a permanent staff

co-located with a supporting computing infrastructure.

Software Selection and Vendor Participation: Working group three's charter was to explore the

criteria used to select software for center development and support and how vendors might

participate in the center. After considerable discussion, the group concluded that while a center

should encourage vendor participation as much as possible, the primary customers should be the

application developers for high-performance systems. This conclusion was based on comments

by participating hardware vendors, who noted that hardware generated revenue, not software

tools. Hence, any adoption and commercialization of software tools by hardware vendors must be

simple and inexpensive. Independent software developers (ISVs) are somewhat more amenable

to technology transfer and collaborative software testing and evaluation.

Like other groups, this group assumed that the center would test, evaluate, harden, document,

and support software tools. In contrast to other groups, however, they assumed the center might

also develop new tools. A formal evaluation board would consider proposals and recommend

allocation of center resources to (a) testing and evaluation, (b) prototype tool hardening, and (c)

new tool development. This evaluation board would be composed of researchers, vendors, users,

and center staff.

The group noted that the mission of the proposed center naturally complements both the Parallel

Tools (PTOOLS) consortium and the National HPCC Software Exchange (NHSE). The PTOOLS

group works to define, develop and promote parallel tools. As such, it can be viewed as a

possible source of prototypes for augmentation by the center. Conversely, the NHSE is a

distribution service for software, documents, and data. Hence, it is a logical dissemination

mechanism for software produced by the center.

Intellectual Property Issues: The fourth working group considered the implications of software

development and augmentation by temporally and spatially distributed groups and the ownership

issues implied by such development. Moreover, participants may include academic researchers,

vendors, and national laboratory staff, each with intellectual property (IP) rules defined by their

employers and funding agencies. The group considered five different models for software and IP

management, ranging from an independent testing center to a software hardening model. After

much discussion, the group concluded that the software hardening model, similar to that

discussed by other groups, was the most viable and useful.

Under the model, the center would accept software testing proposals from the community, identify

appropriate prototype tools, enhance and augment the tools, create user documentation, and

convert them to usable tools. As with the software selection group, the IP working group identified

end users as the primary target rather than HPCC vendors. In consequence, the group assumed

that the center would continue to distribute software hardened tools throughout their useful

lifetime.

To address the intellectual property problems that arise from multiparty development and

technology transfer, the HPCC agencies must adopt consistent IP policies. It also recommended

that the center serve as a clearing house for IP information and education for the HPCC

community. To minimize later problems, the center should insist on a full IP disclosure on tools

prior to their adoption by the center and all IP issues should be negotiated in advance.

Technical Infrastructure: Working group five considered the resources needed by a national

software testing and evaluation center. The group took as its working hypothesis the belief that

the center would serve five functions: early evaluation of promising ideas, enhancement of

research prototypes to usable levels, creation of reference implementations for key tools,

definition of standard tool interoperability conventions, and education of researchers and

students.

With this basis, the group concluded that a testing and evaluation center must be co-located with

one or more national HPCC sites (e.g., Department of Energy laboratories, NSF supercomputer

centers, or NASA centers with strong computational programs). To ensure diversity of users and

machines, the center should be physically distributed across a small number of HPCC sites. This

distribution and co-location would not only enable access to high-performance computing

facilities, it would allow center staff to exploit local expertise, both for software testing with real

users and interaction with technical support staff. Although co-located, the testing center should

be independent of the host organization, with its own funding base and management authority.

Finally, the center staff would consist of a group of software tool developers, user support staff,

and technical writers.

To support software testing and evaluation, the center would also need dedicated computing

facilities, though not of the large scale available at national HPCC centers. As a complement, the

center would also require access to commercial software development tools and to source code

for key HPCC system components. These "crashable" facilities would enable the testing center

staff to evaluate and develop prototypes that interact closely with system software and hardware

while not interrupting production computation on large systems.

Workshop

Recommend

ations

The workshop participants all agreed that collaboratively developing robust, user-friendly

performance tools for high-performance parallel systems is expensive and as intellectually

challenging as national challenge science, yet it is often assumed to be "easy," despite the fact

that tool developers on new systems face the same software problems as application developers,

and their tools must interoperate with multiple applications. Moreover, effective tool development

requires many mundane activities not normally associated with academic computer science

research, namely testing early prototypes with friendly users who are application scientists,

developing and testing intuitive user interfaces, and writing manuals and documentation. Most of

the activities are not rewarded by the computer science research community. Activities such as

supporting a user community, teaching training classes, and adapting software to new hardware

and software releases will not bring tenure, peer adulation, better graduate students or (usually)

larger research support; therefore, most academic computer scientists have little incentive to

develop a tool beyond the prototype stage.

The workshop attendees concluded that a creating a national, though distributed software tool

evaluation and testing center was the only practical solution to the HPCC software tool crisis. Co-

located with extant HPCC centers and organized as a cooperating group of developers and

support staff, the proposed center would work with academic researchers, application scientists,

and vendors to evaluate and test prototype software tools. The center staff would "harden" and

support modest number of prototype tools, creating documentation, porting software to multiple

platforms, and fostering standard interfaces for tool interoperability.

These views are not simply those of the workshop organizers or the participants in the most

recent workshop. They mirror those expressed at the Pasadena [3,4] and Pittsburgh [9] meetings

and at the five performance and debugging tool workshops. The workshop attendees have

repeatedly recommended a major project to understand the limitations of current tools, the

requirements for future tools, and to exploit this knowledge to transfer useful software prototypes

to the application community and to commercial vendors.

Clearly, however, one center cannot and should not supplant traditional mechanisms for

technology transfer from academia to industry. We envision a more synergistic relationship with

these traditional mechanisms. Moreover, it is important to realize that there are many possible

definitions of software tool "success" that do not include commercialization. Indeed, as argued

earlier, commercialization is extraordinarily difficult, and many valuable tools have no commercial

market. Pragmatically, success means that a software tool is useful, tested, documented, and

widely used. Hence, the goal of the center would be to serve as the focal point for the software

tool development, vendor, and computational science communities to increase the number and

breadth of useful and necessary tools and to encourage commercialization. To realize this goal,

the workshop attendees and organizers envision four foci.

Early Prototype Testing and Evaluation: Typically, academic tool researchers develop simple

software prototypes to demonstrate a proof of concept prior to publication. Because most of these

projects are small, there are few opportunities to test the ideas with appropriate external users

and to learn what aspects of the approach have practical merit. By coupling academic tool

researchers with a group of friendly users at supercomputing centers, where there is the

infrastructure needed to support early prototypes, the tool researchers can gain early feedback on

the practicality of their ideas. Those prototypes that show promise of potential usefulness to

application developers could then be further developed with the center's assistance, and where

appropriate, in cooperation with one or more vendors. An additional bonus from this stage would

be also to gain new research ideas.

Mature Prototype Testing and Extension: Smaller numbers of prototypes are sufficiently mature to

be used and useful to a user community not co-located with the tool developer. Major reasons for

the importance of co-location include tool bugs, lack of documentation, missing features, and

support for only a small number of parallel hardware platforms. Proximity to developers increases

the likelihood of interaction to aid in overcoming these deficiencies. Tools in this class, however,

have passed an initial "usefulness test" by the application community. Hence, the second focus of

the center would be to work with users to aggressively test these tools, identify bugs and

inadequacies, work with the original tool developers to fix those bugs and add missing features,

and (where appropriate) extend the tool to other hardware platforms.

Vendor Cooperation and Standards: Both the promising early prototypes and the more useful,

mature tool prototypes should have vendors involved in their evaluation and testing early in the

cycle if commercialization is at all an option. Not every tool "vetted" by the center will be a

candidate for adoption by one or more vendors; however, many would viewed as sufficiently

useful to be of interest to vendors of high-performance parallel systems.

Software Packaging and Support: Finally, tools deemed useful and worthy of dissemination, but

not adopted by one or more vendors, must be documented, packaged for installation at remote

sites, and, when problems arise, supported, patched, and upgraded. Although this work is

mundane, some entity must assume this responsibility, else even good tools will not be used for

long periods.

Summary

The need for "better" software performance analysis and debugging tools (where better means

easier to use, more efficient, better integrated, and more informative) for high-performance

parallel systems is a well documented and widely recognized need. The Strategic Implementation

Plan [1] of the Committee on Information and Communications of the National Science and

Technology Council has noted that "Raising the productivity of the software industry through

simplifying toolkits can yield significant dividends in the international marketplace and enable

more rapid introduction of hardware advances into affordable production systems." Raising the

productivity of applications developers through appropriate, easy-to-use software performance

and debugging tools creates a larger market for these affordable production systems. Providing a

place where these tools can be effectively tested, evaluated and improved can ensure success in

the entire high-performance parallel computing industry.

References

1. Committee on Information and Communications, National Science and Technology Council,

"Strategic Implementation Plan: American in the Age of Information," March 1995

2. Koelbel, C., Loveman, D., Schreiber, R., Steele, G, and Zosel, M., The High-Performance

FORTRAN Handbook, MIT Press, Cambridge, MA, 1994

3. Messina, P. and Sterling, T. (Eds.), Pasadena Workshop on System Software and Tools for

High-Performance Computing, SIAM, January 1992

4. Messina, P. and Sterling, T. (Eds.), "Second Pasadena Workshop on System Software and

Tools for HPC Environments," January 1995

5. Pancake, C., "Collaborative Efforts to Develop User-Oriented Parallel Tools," in Debugging and

Performance Tuning for Parallel Computer Systems, Simmons, Hayes, Reed, and Brown (Eds),

IEEE Computer Society Press, December 1995

6. Simmons, M. , Koskela, R., and Bucher, I. (Eds), Instrumentation for Future Parallel Computing

Systems, Addison-Wesley, 1989

7. Simmons, M. L., Hayes, A. H., Brown, J. J., and Reed, D. A., Debugging and Performance

Tuning for Parallel Computing Systems, IEEE Computer Society Press, 1995

8. Simmons, M. and Koskela, R. (Eds.), Parallel Computing Systems: Performance

Instrumentation and Visualization, Addison-Wesley, 1990

9. Stevens, R. (Ed.), "Workshop and Conference on Grand Challenge Applications and Software

Technology," May 1993

Appendix A - Workshop Agenda

Tuesday - 10/15/96

4:00 p.m. Registration

6:30 p.m. Reception

Wednesday - 10/16/96

7:30 a.m. Registration

8:45 a.m. Keynote -- Ken Kennedy, Rice University

"Technology Transfer Paths for HPCC Software Tools"

9:45 a.m. Dan Reed, University of Illinois

"Software Tools: Sin and Redemption"

10:30 a.m. Break

11:00 a.m. Dennis Gannon, Indiana University

"Does Our Model of Parallel Program Performance and

Programming Tool Design Scale to Metacomputing?"

11:45 a.m. Christopher Kerr, IBM

"Use of Software Tools for Application Development"

12:30 p.m. Lunch

2:00 p.m. Working Group Sessions

3:30 p.m. Break

4:00 p.m. Working Group Sessions

6:00 p.m. Conclusions of Working Group Sessions

7:00 p.m. Dinner

8:30 p.m. Dessert/Poster Session

Thursday - 10/17/96

8:30 a.m. Ian Foster, Argonne National Laboratory

"Tools for Network-Based Supercomputing: Lessons from the

I-WAY Experiment"

9:15 a.m. Andrew Grimshaw, University of Virginia

"Supporting Diversity and Performance in Wide-Area

Metasystems"

10:00 a.m. Break

10:30 a.m. Working Group Sessions

12:30 p.m. Lunch

2:00 p.m. Evgenia Smirni, University of Illinois

"Parallel I/O: Problems and Solutions"

2:45 p.m. Barton P. Miller, University of Wisconsin

"An Overview of the State of Parallel Debugging"

3:30 p.m. Break

4:30 p.m. Working Group Sessions

6:30 p.m. Conclusions of Working Group Sessions

7:00 p.m. Clambake

Friday - 10/18/96

8:30 a.m. Working Group Sessions

10:00 a.m. Break

10:30 a.m. Working Group Reports

12:30 p.m. End of Workshop

Appendix B - Working Group Reports

Working Group

Reports

Overview

The following working group reports were produced by the chairs of each working

group in consultation with the members of the respective groups. The six working

groups were organized as follows:

 Technical challenges: performance tools

 Management issues for a software tools center

 center software selection and vendor participation

 Intellectual property issues

 center technical Infrastructure

 Technical issues: debugging

Technical Issues - Performance Tools

 Working Group Members

 Introduction

 Preliminary Discussion

 Challenges in Tool Development and Application

 Selected Technical Issues

 center Commentary

 Acknowledgements

Working

Group

Members

Technical Issues - Performance Tools

 John Cerutti LANL

 Joe Durant SNL

 Greg Eisenhauer Georgia Tech

 Peter Eltgroth LLNL

 Edith Epstein HP

 Adam Ferrari Virginia

 Dennis Gannon Indiana

 Al Geist ORNL

 Andrew Grimshaw Virginia

 Michael Heath Illinois

 Marty Itzkowitz SGI

 Karen Karavanic Wisconsin

 Brond Larson SGI

 John May LLNL

 Nick Nystrom PSC

 Doug Pase IBM

 John Reynders LANL

 Diane Rover Michigan State

 Evgenia Smirni Illinois

 Robert Snelick NIST

 Elizabeth Williams NSA

Introduction

Rapid architectural innovation and ever-higher peak hardware performance are two results of the

intense vendor competition in high performance computing we see today. While this is good news

for the users, it has stretched academic, laboratory, and vendor software tool groups to the limit,

forcing them to continually create tools for changing programming models and new hardware

environments. This group addresses the current situation in performance tools and outlines

challenges and research issues, technology transition remedies, and possible solutions to

problems raised.

Questions posed to the Working Group as starting points include:

 What are the most successful current performance tools today and what are their

characteristics?

 What performance tools will be needed for emerging programming models and new

hardware environments, such as teraflop and petaflop computing and distributed network

computing?

 How does one measure the performance accurately across multiple programming models

in a single code (object-oriented, data parallel and message passing)?

 How can the technical issues associated with evaluation, testing, interoperability, and

leverage best be addressed through the proposed center?

 What relative roles should hardware (e.g. counters, registers, etc.) play in performance

tools for future parallel systems such as tera- and peta-flop-capable systems?

 How can the potential data explosion in software statistics gathering be addressed

effectively for these large systems?

 How can data mapping and motion issues be correlated effectively with observed (or

measured) program performance?

While definitive answers are not offered for most of these, they helped direct the group's

discussion. Additionally, the group referenced issues identified by Dan Reed in his talk, "Software

Tools: Sin and Redemption," including: emerging opportunities/problems, multiple programming

model support, hardware/software support, source code mapping, adaptivity, supporting multiple

languages, and the center for Testing and Evaluation (HPSST Task Force).

Finally, the group refined some of the aforementioned issues and brought forth a few additional

ones of interest, as follows:

 In the context of opportunities/problems in metacomputing environments, time-shared,

interactive environments, and adaptive, dynamic environments, what are new roles for

performance tools? For example, will Quality of Service replace FLOPS as a baseline

metric?

 Correctness and repeatability of performance measurements is often a concern to users.

How can measurements be validated or trusted?

 How can we leverage the existing desktop computing (i.e. commercial) tool base?

 Should we take a broader view of performance tools (e.g., given new metacomputing

environments), including not only tools used by end-users to tune programs, but also

tools used by application developers (e.g., optimizers, libraries, compilers) and adaptive

software systems (e.g., schedulers) to get good performance?

 How should we address end-user resistance to using tools?

 User dissatisfaction may result from non-prescriptive tools. We need to consider what

users want to know from tools, i.e., what's the intended purpose in using a tool. As new

classes of systems become harder to understand, it may be essential that tools prescribe

possible solutions, such as indicating when algorithmic changes are needed.

 What is the level of tool that can be effectively used by end-users who have no

knowledge of the field of high-performance program tuning?

Clearly, with respect to tool development, the group is concerned with trends in computing

environments, commercial tool technology, and the use of tools.

Preliminary

Discussion

The group first considered the question of successful contemporary performance tools for

parallel/distributed systems and their characteristics. This of course raised the question of the

scope of tools being considered. Without attempting to be comprehensive, we noted a number of

traditional tools, commercial and otherwise, that came to mind, such as: ParaGraph, Pablo,

Paradyn, XPVM, AIMS, Apprentice and ATExpert (Cray), Workshop (SGI), Puma (HP/Convex),

VT (IBM), Prism (TMC), ATOM (DEC), FORGE, Purify, gprof, and timer calls. We extended our

list with optimizing compilers, libraries such as PVM, MPI, and ScaLAPACK, languages such as

perl, etc., all of which assist the programmer in realizing high performance. In the end, we

delineated three broad classes of tools that support: (1) problem identification, e.g., profiling tools;

(2) root cause analysis, e.g., trace- and search-based tools; and (3) program development, e.g.,

programming environments. These tools may provide various types of performance information

related to the memory hierarchy (e.g., cache performance), memory utilization, CPU usage, input/

output, message passing, synchronization, load balance, processor utilization, source code, etc.

This information may be presented at various levels of granularity (e.g., system, node, program,

subroutine, basic block, loop, instruction).

The success of these tools is open to debate, or at least the meaning of success is. All are

documented, available to users, demonstrated by developers/vendors, and cited in

research/product literature. A tool's success is influenced by several factors, including: the tool

itself (e.g., quality of its user interface); functionality and applications of the tool; willingness of

users; and demands of the application domain. There is no single model of development and

deployment leading to success. Moreover, it's hard to pin down the characteristics distinguishing

a successful tool. Ideally, a tool should be all of the following: robust, easy to learn (supportive of

incremental learning), easy to use (providing quick, basic feedback), portable, configurable,

matched to usage idioms, well-supported, flexible (applicable at any time in program development

cycle, e.g., without recompilation of program), and accessible (providing readily identifiable

functions). Ultimately, the key characteristic of a successful performance tool is that information

provided by the tool is meaningful and useful for improving program performance.

A useful reference relevant to this discussion is "Techniques for Performance Measurement of

Parallel Programs," by J. Hollingsworth, B. Miller, and J. Lumpp, in Parallel Computers: Theory

and Practice (edited by T. Casavant, P. Tvrdik, and F. Plasil, IEEE CS Press, 1996), which

summarizes problems associated with developing performance measurement tools and describes

some of the systems that have been built to deal with these problems.

Challenges

in Tool

Development

and

Application

The group identified a number of challenges faced by the performance tool community looking

ahead to future needs. These represent hard problems that are currently without solution. We

summarized three areas for these challenges:

  Heterogeneity

  Hierarchy

  Scale

All aspects of a parallel/distributed application are becoming increasingly heterogeneous. The

application itself is not only compute-intensive but also data-intensive, involving scientific

instruments, databases, etc. The architecture upon which it executes has potentially diverse

resources in the systems used, their nodes, the networks connecting them, and so on. The

computation layer and the network layer exhibit intricate relationships and cannot be viewed

separately. The heterogeneity in application and architecture propagates into the programming

languages, environments, and models. This heterogeneity often results in more dynamic, less

predictable conditions so that adaptability--another challenge--is essential. Consequently, validity

of measurements is even more difficult to determine.

Hierarchy is an important element in system design and analysis and is often exploited to

manage complexity. It is present throughout high-performance computing, in systems, networks,

memory, algorithms, programming abstractions, etc. However, to take advantage of its power, we

first need to expose it from a performance perspective. This remains a challenge for performance

tools.

Finally, solving grand problems involves ever-grand scales. The scales of the following attributes

continue to grow: number of processors, size of application, length of run, number of resources to

be controlled/managed (e.g., network, cache), and amount of concurrency, among others. The

amount of concurrency is related in part to the finer granularity of parallelism, such as threads

and instruction-level parallelism. The volume of performance data collected and the scale of the

information are vast. Effectively dealing with these is another significant challenge to performance

tools. Moreover, tools should offer insight into scalability and highlight behavior impacted by

relevant scaling factors. This is only becoming more important as users have access to varying

processor counts in multiprocessor workstations as well as in network-based supercomputers.

In short, with heterogeneity, hierarchy, and scale, the end goal of optimization of program

performance becomes more complicated (or, as one participant stated, "NP-really-hard").

Selected

Technical

Issues

The most important technical issues agreed upon by the group address emerging computing

environments and the challenges outlined above. They are summarized briefly:

 Selective presentation given data explosions

 Memory utilization and exploiting NUMAness

 Tuning across multiple executions, systems, and networks

 Mixed programming models: message passing, object-oriented, data parallel, threads,

etc.

 Mixed languages and paradigms: C, Fortran, HPC++, etc.

 Adaptability to dynamic conditions

 Localized vs. system-wide performance analysis

 Accuracy and validation of results

 Tuning of scheduling algorithms

 Real-time control of data collection: volume, level, type, etc.

Some of these have special relevance to metacomputing environments and high-end shared-

memory systems. In a metacomputing environment, traditional tuning techniques for performance

optimization, e.g., per-node component optimization, will continue to be used; however, new

tuning techniques are essential. The objective of tuning focuses on high quality of service or best

average performance. It may also involve non-performance oriented metrics, such as cost.

Balancing of per-node performance with system-wide performance must take into account

considerable variability in resource selection, availability, and obtained performance. Tuning

across multiple executions may be needed for useful results. More automated tuning is likely

required due to increased complexity. For example, tools may be required to adjust resource

usage on the fly, dynamically adapting to changes in the environment (e.g., new users, faults,

load fluctuations, etc.). Tuning scheduling algorithms may have greater impact than tuning

application code. Issues include resource requirements for scheduling and other system

functions, such as network management, and performance estimation.

In a shared-memory system, control of memory allocation, including reallocation, is important to

enforce locality. In general, NUMA-related features of the architecture must be exploited to

achieve high performance. With clusters of symmetric multiprocessors, tools need to expose the

hierarchy and both message passing and shared memory models.

Issues involving users and their views of performance continue to be a concern. Tools must

support and incorporate domain-specific performance information in metrics and displays so that

information gathered and presented is better matched to the programming model seen by the

user. Minimally, tools needs to map data back to the source code. Users tend to prefer using a

single programming model, for example, adopting a message-passing model even on shared-

memory machines (allowing portability as well as efficient implementation); and to resist new

machines unless critical for performance. Thus, tools must handle information about an

application in terms of the programming model and with respect to the machine. However,

different users have different interests: an application programmer may be interested in viewing

data at a high level of abstraction, while a toolkit builder may need low level data. But users may

also be interested in the costs to program execution of mapping between models. In general,

providing feedback to users on implementation aspects that may cause performance problems is

of growing importance (for example, if some procedure or parameter may cause many small

messages, which is known to be costly).

Many of these technical issues, or related ones, have already been the subject of discussion

among tool developers and users. While progress has been made, rapid changes in hardware

and architecture result in a moving target.

center

Commentary

The group explored activities and issues associated with the proposed center for testing and

evaluation of software tools. Possible activities for a center and the group's assessment of the

level of each activity are listed:

 Evaluate research prototypes: High

 Develop enhanced prototypes, deploy and maintain prototypes: High

 Test/validate prototypes: High

 Promote commercialization: Low

 Promote standards: Low-Moderate

 Facilitate interoperability: Low-Moderate

 Promote user involvement: High

A number of questions were raised, as summarized in the following issues. The group expressed

concern about the level of funding to the center and the effect on funding to external (non-center)

research projects. Additionally, the mode of collaboration, interaction, and transition with external

projects needs to be addressed. In particular, the process of selecting tools, i.e. transitioning,

must be specified, including the scale of projects/tools to be undertaken. The roles of the

stakeholders are not yet clear. Why would researchers hand over projects to a center? Why

would agencies or labs hand over critical software? If it's non-critical software, then what is the

reason for transitioning and investing in it? On the other hand, to what extent will vendors be

willing to participate in the center, for example, adhering to standards developed by the center?

How can the center ensure vendor support for tools that need specific hardware support (that

must be provided by the vendor)? Another concern is staff quality and diversity of skills. The

center will need to attract well-qualified technical staff having a potentially wide variety of skills. Is

that possible if the reality or perception is that they are working on mundane aspects of others'

projects? Finally, the group noted a potential conflict of interest in the role of the center to both

develop and test prototypes.

In further considering the center, we assumed it would not be the dominant means for tool

development. In other words, development would continue to occur by various research groups.

For appropriate projects undertaken by the center, it will enhance and maintain tools. However,

the center will have resources sufficient to address only a subset of the technical issues. Given

this situation, potential positive outcomes of the center include: development of more robust tools

for multiple platforms; greater availability of tools; availability of canonical benchmarks for tool

testing and evaluation; and education. Several alternative strategies instead of setting up a center

were cited:

 Change procurement policy so software tools are explicit in RFPs; then vendors will

transition tools.

 Recognize the intrinsic value of software tool development separate from application

development (as Infrastructure across applications).

 Consider other models, such as the Digital Libraries Project (pilot implementations at

multiple sites).

The group took an objective albeit selective look at the proposed center, as time and assumptions

permitted. We sought to identify both positive and negative aspects, particularly from a technical

viewpoint. Whereas many questions remain to be answered, the exercise--a forum investigating

new ideas and strategies--was worth the investment. There are many challenging technical

issues facing the performance tool community.

Acknowledg

ements

Special appreciation is given to Greg Eisenhauer and Adam Ferrari for serving as scribes for the

sessions and to Al Geist and Mike Heath for assistance in extracting highlights for the

presentation.

Management Issues for Proposed Software Tools

center

 Working Group Members

 Introduction

 Answers to Management Issues

 Additional Questions and Basic Assumptions

 Summary and Additional Comments

Working

Group

Members

Management Issues for Proposed Software Tools center

 Ann H. Hayes LANL

 Kathleen P. Hirons LANL

 Kay Howell DOD

 Alan Mink NIST

 Richard Oliver NMSU

 James C. T. Pool, Chair Caltech

 David Rich Dolphinics

 Nahid Sidki DOD

 Paul H. Smith DOE

 Rick Stevens ANL

 Tammy Welcome NERSC

 Mary Zosel LLNL

Introduction

The charter of Working Group 2, Management Issues for Proposed Software Tools center, was

formulated as the following set of questions:

 What is the mission of the center?

 What are the goals and objectives of the center?

 Define the scope of the proposed center.

 Envision the management structure of this organization. How large and what skills must its

staff possess?

 Should the center be centralized? Distributed? A virtual center?

 How should such a center be organized for each of the above models?

 Shall center personnel be permanent? Temporary? Rotating?

 What infrastructure should be in place to facilitate interactions between vendors, developers,

and users?

 What should be the model for achieving these interactions and how should funding be

allocated (percentage, method) for these collaborations?

 What sort of oversight process should be put in place at the center?

 What lessons can be gleaned from the past experience (e.g., the NSF supercomputer

centers and S&T centers)?

In this report, we first answer these questions (in the order the questions were considered by the

Working Group). We then summarize: a) additional issues raised during the Working Group's

initial deliberations about these questions and b) the assumptions developed during these initial

deliberations and employed to prepare the answers to the questions.

Answers to

Management

Issues

Question 1: What is the mission of the center?

The mission of the proposed center should be to ensure application developers have access to

major software tools responsive to their requirements for developing applications on highly

parallel HPC systems by stimulating interactions among application developers and software tool

developers, including the computer science research community, independent software vendors (

ISVs), and system vendors.

Question 2: What are the goals and objectives of the center?

The goals and objectives of the proposed center should be to:

 collect, collate (to examine and compare carefully in order to note points of disagreement),

and disseminate users' requirements for tools;

 stimulate standardization to ensure interoperability among tools and portability of tools;

 establish methodology and test suites to evaluate tools;

 evaluate and, if appropriate, enhance prototypes of major software tools;

 ensure enhanced prototypes are available to application developers as high quality tools on

the principal highly parallel HPC systems, and

 support these tools through their useful life period or until alternative support exists.

Question 3: Define the scope of the proposed center?

The proposed center should accept prototypes for major software tools applicable to highly

parallel HPC systems, that is, tools with minimal potential for commercialization due to limited

market, from application developers and tool developers (including ISVs and system vendors

under appropriate licensing agreements that ensure availability on the principal highly parallel

HPC systems) to evaluate and, as appropriate, to enhance to high quality tools primarily via

partners (see "CRPC Model" below) and/or mini-consortia (see "CNRI Model" below).

Questions 5 & 6: Should the center be Centralized? Distributed? A virtual center? How

should such a center be organized for each of these models?

The center should incorporate the best features of the center for Research on Parallel

Computation and the Corporation for National Research Initiatives. The center for Research on

Parallel Computation (CRPC) is one of the National Science Foundation's 25 Science and

Technology centers. The CRPC was established in 1989 to make massively parallel computing

systems as usable as conventional supercomputing systems are today. The CRPC is a

consortium that includes seven core sites and six affiliated sites; therefore, the term "center"

implies not a single facility, but a nation-wide consortium of more than 400 researchers, support

staff, and graduate students.

The Corporation for National Research Initiatives (CNRI) is a non-profit research and

development organization formed in 1986 to help focus U.S. strengths in information processing

technology. Working with industry, government, and academia, CNRI is engaged in scientific

research on the design of experimental infrastructure which can improve the country's long-range

scientific and engineering productivity. CNRI conceives and leads multi-party collaborative

research efforts involving U.S. Government, business and academic institutions. Among its

numerous projects, CNRI organized and managed a national gigabit network testbed project with

the support of the National Science Foundation (NSF) and the Advanced Research Projects

Agency (ARPA), involvement of key universities and U.S. computer and telecommunications

companies.

A "CRPC Model" for the proposed center would emphasize an initial set of primary partners

(subsequently augmented with secondary participants as deemed necessary) to evaluate and

then to enhance selected prototypes. A "CNRI Model" for the proposed center would emphasize

an initial small core staff responsible for establishing mini-consortia to evaluate, enhance, and

maintain prototypes in specific areas. Thus, a fundamental difference between these two models

is their initial formation -- the "CRPC Model" involves a pre-defined set of partners from the

beginning, while the "CNRI Model" has only an initial core staff.

Advantages of the "CRPC Model" include:

 Coherent, stable team of primary partners

 Technical staff with "corporate memory"

 Team available to initiate new ventures without startup delay

 Executive Committee management

 Reallocation of funds to respond to unanticipated opportunities

 Continuing assessment of progress and directions by key participants

 Coordination among partners to ensure interoperability

 More responsive to smaller tools

 Experts available to quickly assess ideas

Advantages of the "CNRI Model" include:

 Open structure

 Evolving set of participants

 Easier to terminate projects and initiate new projects

 Mini-consortia can be formed to ensure involving all segments of HPC community

interested in a specific tool

 Flexibility

 Choice of projects and their arrangements

 Subcontracts including intellectual property

 Close interactions with agency program managers

 Selection of projects consistent with agency programs

These distinctions are, of course, not totally exclusive; moreover, both models would support:

 organizing workshops and forums to determine user requirements, interfaces among

tools, and system interfaces, and

 providing basic technical services, e.g., generate test suites.

 In both models, each project team should include:

 Application developers (academia, centers, laboratories),

 Tool developers (academia, laboratories, ISVs, vendors), and

 Software engineers (laboratories, ISVs, vendors).

Moreover, the project team should include representatives of the developers of the prototype to

be enhanced.

Question 4: Envision the management structure of this organization. How large a staff?

What skills must its staff possess?

The proposed center should include a core staff to manage interactions with users, developers,

ISVs, vendors, and agencies. Under the "CNRI Model", this staff would, for example:

 generate statements of interest in specific tool areas,

 review resulting white papers and proposals,

 negotiate and monitor subcontracts to mini-consortia,

 review mini-consortia's technical progress, and

 provide limited technical support, e.g., generate test suites and participate in review

process.

Under the "CRPC Model", the core staff would interact with the partners rather than the mini-

consortia and this core staff would be augmented by additional technical staff at the lead site.

Question 7: Shall center personnel be Permanent? Temporary? Rotating?

The proposed center should include a "permanent" management and administrative staff,

leverage extant staff and facilities, and include small rotating technical staff. This staff should be

located at an organization with appropriate supporting infrastructure ranging from a procurement

office to employee benefits (and appropriate computing resources which, however, is a topic

included in the charter of another Working Group).

Questions 8 & 9: What infrastructure should be in place to facilitate interactions between

vendors, developers, and users? What should be the model for achieving these

interactions? How should funding be allocated (percentage, method) for these

collaborations?

The "CRPC Model" and "CNRI Model" discussed above provide excellent examples of successful

infrastructures. Under either model or a blending of the two models, the center should initiate test

and evaluation activities in a small number of areas consistent with perceived user requirements.

The center should then initiate one or possibly two primary long term (e.g., three year) projects

per year until it has achieved a steady state consistent with the available funding. It should

organize corresponding major forums and workshops and, as appropriate, initiate perhaps two

smaller short term projects per year.

Question 10: What sort of oversight process should be put in place at the center?

The proposed center should have:

 an independent user group with members representing users of the principal highly

parallel systems and a cross-section of application disciplines,

 a small executive committee charged with the responsibility of managing the center,

 a technical committee (application developers, tool developers, and tool providers

involved in projects),

 an external (technical) advisory committee (application developers, tool developers, and

tool providers), and

 an inter-agency (policy) advisory committee (e.g., responsible agency program

managers).

Question 11: What lessons can be gleaned from the past experience (e.g., NSF

supercomputer centers and S&T centers)?

The answers to the questions have been built from experience with CRPC and CNRI. The

experience gained during the preparation of proposals for the NSF Partnerships for Advanced

Computing Infrastructure Program indicates potential opportunities for cooperation and possibly

direct involvement with the successors to the NSF Supercomputing centers. Likewise, there are

potential opportunities for cooperation with DOE laboratories, DOD centers including the DOD

Modernization Program, and the NASA research centers. These opportunities include, in

particular, mechanisms for involving application developers.

Additional

Questions and

Basic

Assumptions

The above answers were based an a set of assumptions adopted during the preliminary

deliberations of the Working Group. These assumptions resulted from an initial cursory review of

the questions, an activity which raised additional questions and issues, including the following:

Why a center? What does it contribute that current programs do not

provide?

How do you define "tools," "users"?

What drives the center: users' requirements, developers' ideas, and/or

ISV/vendors' requirements?

How do you communicate users'requirements to developers (different

than user involvement in testing and evaluation)?

How do you ensure "real" feedback from users?

How do you select and support projects without becoming a "funding

agency"?

How do you ensure center helps ISVs and vendors, rather than

competes?

Who are the center's customers? Who pays the bill for tools?

What is anticipated level of annual funding?

What are the center's deliverables? Who promotes these deliverables?

How do you ensure interoperability of tools?

How do you sustain center when initial enthusiasm declines?

The result of these initial deliberations was a set of assumptions, including:

The raison d'etre for the proposed center is providing tools to make an

impact on application development; therefore, the center should focus

on major software tools for highly parallel HPC systems -- like

hardware, these tools have minimal potential for commercial viability;

Application developers' requirements should be the driving force for the

center;

while the customer for tools is the application developer, the cost is

incurred by agency application programs

distinct applications have the same needs for tools which implies multi-

agency funding

probably less than ten candidate prototypes for ready for enhancement

today

implies pursuing a few large multi-year projects

sources for prototypes

basic and applied computer science research programs (academia,

laboratories)

major mission programs (e.g., DOE/DP ASCI, DOD HPC MOD/PET,

NSF PACI, NASA GCs)

the center output must match/exceed quality of a commercial package

Implies continuing support for successes

the center will leverage existing HPC activities

center can benefit from Ptools and NHSE input from users

center may agument NHSE parallel tool repository

Summary and

Additional

Comments

The Working Group conducted its deliberations about the management issues for the proposed

center without debating whether or not the center should be formed.

Since the mission of the proposed center is development rather than research, the Working

Group favored the "CNRI Model". However, the Working Group recognized that a compromise

between the two models through an assimilation of selected features of the "CNRI Model" into the

"CRPC Model" is a possible alternative. A "modified CRPC Model" might include, for example,

strengthening the roles of the Director and the Executive Committee to manage development

activities, starting with a smaller set of partners, and adding partners selectively as the areas of

software tools to be evaluated and enhanced are more completely defined.

The Working Group questioned how to sustain the proposed center when the initial enthusiasm

declines? It concluded that the user community through, for example, a user group could be the

ultimate advocate for sustaining the center. The success of the center would then be judged by

the users of the software tools it delivered, thus, ensuring that user requirements drive the

activities of the center.

Software Selection and Vendor Involvement

Working Group Members

Introduction

Vendor Involvement Comments and Analysis

Assumed center Structure

Selection Criteria

Conclusions

Working

Group

Members

Software Selection and Vendor Involvement

 Jim McGraw (Chair) LLNL

 T. Adams LANL

 Robert Dilly IBM

 C. Kerr IBM

 James Kohl ORNL

 Olaf Lubeck LANL

 Allen Malony Oregon

 Allan Porterfield Tera

 S. Sekiguchi Electrotechnical Laboratory

 Margaret Simmons NCO

 Pat Teller Texas, El Paso

Introduction

A Software Tools Testing and Evaluation center (STTEC) must facilitate the use of high quality

and innovative tools by the developers of scalable, parallel scientific applications. Such tools

are not available. Tools developed by researchers in the academic sector, although innovative,

usually do not evolve into usable tools that could be adopted as or integrated into products by

vendors. Tools developed as part of commercial efforts usually lack the innovation and

investment necessary to solve the hard problems related to application development. This

working group was asked to focus on two key questions related to the structure of a STTEC,

which we will call the center: (1) What selection criteria should be used to identify the software

to be developed at the center? (2) How might vendors participate in the center's activities and

benefit from the center's accomplishments?

The discussions and conclusions from this working group covered a broad range of possible

mission statements for a center and was influenced by the desired degree of vendor

involvement. A number of important points surfaced regarding difficulties that various types of

vendors might encounter in taking advantage of the testing, evaluation, and hardening efforts

that the center might undertake. It appears that while a center should encourage the

participation of vendors as much as possible, the primary customers should probably be the

application developers that use high-end systems.

Using this focus, the working group elaborated on a possible mission/charter for the center.

This charter included evaluation, testing, and hardening activities for various software tools.

Based on these activities, the group developed selection criteria for choosing software that a

center would handle. These criteria included factors related to the state of the tool (current and

proposed), the viability of the technical plans for advancing the tool, the resources needed to

carry out the plan, and various requirements upon the center itself. In addition to these criteria,

this group recognized that the Working Group on Intellectual Property Issues raised some

significant points that needed to be addressed as part of the selection criteria (which are not

replicated here).

The remainder of this working group report contains four sections. Section 1 summarizes the

key issues and conclusions regarding the potential for vendor involvement in a center. Section

2 gives a detailed description of the assumptions made about the structure and charter of a

center. Section 3 contains the description of the selection criteria for transitioning software tools

into and out of the center's responsibility. Section 4 summarizes the key conclusions of the

group's deliberations.

Vendor

Involvement

Comments

and Analysis

Any long-term solution to the inadequacy of software tools for high performance computing

(HPC) must involve vendors because only they can provide the necessary infrastructure

support and migration of these tools to new platforms. In this context, "vendor" refers to a

computer manufacturer or independent software vendor. If a center is proposed to help solve

the software tool inadequacy, then seeking vendors' acceptance and use of the center is

critical. Not surprisingly, vendors have a diversity of positions and concerns regarding what a

center might contribute and what type of vendor involvement would be most beneficial and

desired. This section highlights the Working Group's discussion of vendors' perspective on

software tools for HPC, evaluation vs. hardening options for a center charter, and the potential

roles vendors could play. Conclusions arising from these discussions make it clear that vendor

involvement is a challenging problem that will require significant care and attention in any

center proposal.

For hardware vendors, revenue comes from selling hardware. Software tools are only critical

when they directly affect the purchase of hardware. In such an environment, the center must

make the transfer of technology to vendors very simple. Quantifying exactly what users need

will be key. Once identified, passing these solutions to vendors must be straightforward.

Sometimes vendors will be willing to take source code supplied by the center directly. Other

times the basic idea can be incorporated into an existing tool (using all, some or none of the

original source). Some vendors will like an idea but will be unable to use the supplied code and

will need to rewrite the code to meet their internal standards. These standards cover issues

such as internationalization, service tools, compatibility with vendors' related products and even

look and feel. In all these cases, the center staff will need to supply expertise to make sure the

transfer of technology succeeds. The assistance will range from consulting on the tool design to

supplying users for evaluating the vendor's implementation.

The test and evaluation functions of the center were perceived to be most universally attractive

to vendors, particularly if the testing were to provide favorable results that could be viewed as

an "endorsement" of the marketability of the software. In addition, any feedback from the

evaluation could provide independent information for planning and further commercial

investment. However, if the software is proprietary, this test and evaluation function and implied

endorsement likely would be incompatible with the nature of a center as an independent,

government-funded organization. Thus, the center might only accept non-proprietary tools.

Even so, companies may be willing to provide tools if improvements (e.g., making them

interoperable over many platforms and more robust) would enhance the value of their

hardware. Universities might also be willing to provide software that they would not otherwise

commercialize and for which they seek broader acceptance and use.

The center could begin with "donated" software tools meeting certain initial evaluation criteria.

The center's test and evaluation functions would identify both the potential value of the tool and

what kinds of improvements would be needed to transform it from a research state into a

commercial prototype. The tool originator and vendors would benefit from the information

obtained during the test and evaluation. If the center would then proceed to further develop the

tool, the entire community would benefit from having a more robust, better documented,

commercial prototype. This prototype could then be distributed through NHSE and be

commercialized by any interested vendor.

A significant group of vendors not mentioned so far, are Independent Software Vendors (ISV).

ISVs are, if anything, a more delicate problem. Such tool vendors' revenue is often closely tied

to the uniqueness of their products and the breadth of platforms on which they are supported.

The center must take particular care not to "compete" with their products. At the same time,

ISVs have experience at porting between machines, which could be an excellent resource for

the center. If a center could find ways to work with ISVs to help "harden'' programs, it would be

beneficial (e.g., hiring an ISV to consult on a project or contracting with an ISV to perform the

hardening and documentation). These types of arrangements lead to a natural migration path

out of a center and to the ISV to create a supported product. By finding and working with ISVs,

a center might be able to satisfy the trickiest legal problem (not overlapping ISVs) while

providing an exit process for successful programs.

The big question in joint development between a center and ISVs will be ownership. This issue

needs to be resolved early in the operation of any successful center. A single policy on

ownership needs to be adopted and very few, if any exceptions, need to be made to it.

Consider the life-cycle of a typical tool which starts in a university setting with many students

contributing which is then transferred to the center. The center applies its staff to evaluate,

harden and test with input from some set of users to enhance the tool. By the time a tool is

ready for commercial adoption, many individuals will have contributed to it. Corporate attorneys

will seek legal assurance that the technology from the center can be used in a commercial

product without becoming involved in litigation over ownership. For a more comprehensive

discussion of these issues, refer to the Working Group on Intellectual Property Issues.

A second question will be whether a vendor (ISV or hardware) can supply code to a center for

evaluation. The group considered it unlikely that any vendor would submit any software "critical"

to the company's success. However, the general feeling (with dissent) was that vendors should

be able to submit potential codes just like any research center, applying the same qualifications

and ownership rights.

Assumed

center

Given all of the options and uncertainty to arise out of the vendor involvement discussions, the

working group decided it had to focus on a particular vision of a center and its charter. Such a

focus suggests one detailed approach to the direction a center might take and it provides a

Structure

more concrete platform for discussions about selection criteria for tools entering and leaving the

center's responsibility. This section describes the working group's vision for a Software Tools

Testing and Evaluation center. Figure 1 shows a simple model of the participants and expected

products. In this model, the primary customers of the center are the people who develop

applications for HPC systems. The center's activities would include testing, evaluating,

hardening, documenting, and/or consulting for selected software tools. An Evaluation Board

would provide direction for handling proposals for the center's involvement in any software

tools. The working group believes that such a center might naturally fill a gap between the

current Parallel Tools Consortium and the National HPCC Software Exchange.

Figure 1: Working Group Model of Participation and Products for a center.

The working group concluded that the primary customer focus for the envisioned center needed

to be the HPC application developers. In this model, they will present requests for tools or tool

improvements to the center and will offer their time as volunteers to assist in tool evaluation

and testing. The rationale for putting application developers first reinforces the point that they

are the people who need the products of the center; it is their time and energy that is being

leveraged to produce more effective software. Their input on the selection of software to be

handled by the center and their recommendations on how the center's activities can enhance

the use of the software will be of critical importance. The working group felt vendors could not

be viewed as the primary customer of the center, due to the risk involved in investing in

speculative tools. If HPC computer systems are viewed as a relatively low volume market, then

the software tools that support those platforms must capture a large market share to be

profitable.

The Federal Government is an important "customer" of the center because it is expected to

provide the bulk of the funding needed to make the center a reality and because many of its

critical missions can only be met through effective use of HPC systems. As such, the

government tie adds some important constraints (e.g., public access to results and non-

competition with the private sector) and responsibilities (e.g., an effective portfolio of software

tool investments that span the needs of the entire HPC community).

Proposals to the center could include the enhancement of an existing prototype tool, the

development of a proposed tool, and the testing and evaluation of existing prototype tools.

Potential sources of proposals span the entire community. Software researchers (from the

academic, government, and commercial sectors) often develop innovative prototype tools.

Such tools might provide new capabilities or use new solution techniques. However, due to

funding constraints or other practical reasons, these tools are not hardened products.

Proposals from these researchers would further efforts to make the tools usable by the user

community. In contrast, members of the user community might propose desirable tools that

currently do not exist at all. Vendors could propose testing and evaluation of their prototype

tools or tool "kernels." They could also propose to contribute non-proprietary tools that could be

made available to the community on an "as is" basis. Of course, ideas or tool elements

produced by the PTOOLS consortium can be incorporated into a proposal to the center.

Members of all three potential sources of proposals can benefit from the efforts of the center.

The research of software researchers can be enhanced by their building on top of hardened,

state-of-the-art software instead of research prototypes. The user community as a whole can

access state-of-the-art software development tools. Vendors can have prototype tools tested

and evaluated by the center, thus, facilitating the software development process, and can direct

their user community to center tools.

Figure 2 illustrates the envisioned center activities and work flow. Different tools will have

different activity paths through the center. An Evaluation Board will manage the path of each

tool based on proposals received for consideration. To facilitate the job of the Evaluation Board,

any existing tool that is part of a proposal will receive an initial test and evaluation by center

staff. This evaluation will be made public at some point in time. The time at which the

evaluation will be made public may depend upon vendor considerations. In this way, vendors

can propose that the center periodically review a tool throughout its development, without

breaching confidentiality before the tool is released. The center will create proper

documentation for tools that it "hardens" to meet real-world usage and for tools that it develops

in their entirety. In either case, the center will be responsible for supporting these tools for some

reasonable time period and will provide related additional documentation, maintenance, and

consulting as needed. However at some point, every tool is expected to exit the center. At that

time, the center relinquishes all responsibility and ownership for the tool.

Figure 2. center Activities and Workflow Structure

An initial solicitation for proposals would be generated to initiate the center's activities. After this

initial solicitation, proposals could be submitted anytime. All proposals would be evaluated by

the center's Evaluation Board (which we will call the Board) on a regular basis. As mentioned

above, a proposal could be: (1) a request for test and evaluation only, (2) a plan for "hardening"

a prototype tool by the center, or (3) a plan for developing a new tool from scratch by the

center. For each proposal, the Board would assess the anticipated costs and benefits, as well

as the availability of required resources. Given this information, the Board would rank proposals

according to a defined selection criteria, which is discussed in the next section.

The center's Evaluation Board would be comprised of a mixture of researchers, vendors, users,

and center staff. The board, as a whole, would be required to have expertise in the field of high-

performance computing, and sufficient knowledge and experience to be able to evaluate and

estimate the cost of center activities that would be associated with implementing software tool

proposals. Researchers will be able to evaluate the difficulty associated with enhancing or

developing a tool. Vendors will be able to identify tools that would be useful to their user base

or applicable to upcoming architectures. Users will be able to identify tools that would be

adopted by the user community. center staff will be able assess the cost of processing (be it

test, evaluation, enhancement, development, or other support). Board members should serve

on a staggered, rotating basis. This approach would insure continuity of decisions and

participation of different vendors, universities, and government laboratories and agencies.

Travel expenses for academic Board members would be reimbursed.

The working group's vision of the center fits comfortably with other existing organizations that

are actively involved with software tools efforts, including the Parallel Tools (PTOOLS)

Consortium and the National HPCC Software Exchange (NHSE). The NHSE acts as a

distribution service for software, documents, data, and information of interest to the high

performance and parallel computing community. As such, it promotes software sharing and

reuse within and across HPCC agencies and facilitates the development of discipline-oriented

software and document repositories. The NHSE is the logical place to distribute software

"produced" by the center.

The mission of the PTOOLS Consortium is to take a leadership role in defining, developing,

and promoting parallel tools that meet the specific requirements of users who develop scalable

applications on a variety of platforms. PTOOLS focuses on new tools, guiding the development,

testing, and evaluation of them from inception through reference implementation. All tools must

meet a demonstrable needs in the user community and the PTOOLS processes involve users

throughout the development. Funding to support the tool development work is the responsibility

the proposer of a PTOOLS effort. The Consortium provides a forum for potential tool users to

guide the tool implementors toward products that will have the features and portability to have

broad acceptance in the community.

The working group viewed the activities of PTOOLS and the center as complimentary. Both

share a common mission and stress the importance of user involvement toward the

development of hardened tools. The primary differences focus on the types of activities to be

undertaken and the means for financially supporting them. The center is expected to have

immediate resources (money and personnel) to dedicate to carrying out its activities and

harden successful research prototypes developed elsewhere. The center can also test and

evaluate software developed elsewhere. Hopefully, the combination of the two approaches to

tool development will increase dramatically the availability of high-quality tools and expand their

use in the community.

Selection

Criteria

Having come to agreement on the structure and charter for a proposed center, the Working

Group encountered little difficulty identifying appropriate selection criteria for software to be

brought into the center. The criteria seemed to divide naturally into five categories: current state

of the tool, proposed state of the tool, the plan for advancing the tool, resource considerations,

and "center" considerations. All of the criteria include a high level of subjectivity. This section

elaborates on the working group's vision and understanding of these criteria and how they

could be effectively applied in practice. Clearly, a tool may not be able to "score'' well in all of

the criteria, however any tool submission should address these issues. The Evaluation Board

for the center must be responsible for carefully weighting these different criteria to best support

the HPC user community's needs.

The state of a tool upon entry into the center determines the fundamental value of the tool as it

currently stands and indicates the potential for useful center improvements. Likewise, the

proposed state of the tool provides an evaluation of whether it would be a worthwhile endeavor

for the center to work on the tool, or whether the end result itself would be useful. The qualities

evaluated for the (current and planned) state of the tool include:

User Support -- the tool must have an existing user base or users must

be desirous of such a tool. In addition, some experimental user

community must be able to consult while the tool is under center

supervision. This aspect emphasizes immediate impact for the

development of HPC applications.

Tool Value -- includes analyzing the relevance, timeliness and viability

of the tool, as well as how far-reaching the impact of the tool may be on

the user community. A tool should have a wide range of impact within

the HPC community at large, or at least a high impact within some

specific user community, to be accepted by the center. This aspect

emphasizes more of a long-range potential of the tool.

"Plug-in" Compatibility -- it must be possible to integrate the tool's

functionality with other complete tools. The tool should also be

extensible. If not in the current state of the tool, these characteristics

almost certainly need to be included in the proposed state.

Interoperability -- a tool should support sufficiently general application

and user interfaces so as to integrate well and interoperate with a

variety of commercially available development environments and

hardware.

center activities are meant to realize state-of-the-art hardened tools and make them available to

the user community. To attain this goal in a timely manner, center activities associated with any

one tool must be limited to a reasonable number of person-hours. The plan for handling each

tool must be clearly delineated and meet the following selection criteria.

Well-defined Activities -- the activities associated with the processing of

a tool (be it test and evaluation, enhancement or development) must be

clearly defined and attainable. Thus, it is of utmost importance that the

enhancement or development of a tool not require any research

activities.

User Involvement -- periodic test and evaluation during the

development of a tool by the user community is imperative.

Measurable Milestones -- attainable milestones, as well as related test

and evaluation procedures, must be defined. (Such test and evaluation

procedures may trigger the tool's exit from the center's work flow, if

milestones are not met.)

The center makes a resource commitment to any tool that it accepts. This investment is made

in expectation of returns on the investment accrued by later users of the tool. Hence, the type

and level of resource requirement for the tool project within the center should be considered as

part of the selection criteria. Resource needs include the "expenditures" of personnel (center

staff) over the lifetime of the project and the money needed to support their working

environment. The tool might also require certain hardware and software infrastructure that the

center may need to buy and then maintain. Clearly, some tool projects will be larger than

others, requiring greater assignment of resources for their successful completion. It is therefore

important for the center not only to have a clear sense of resource needs as they relate to the

project plan (different project stages may have different needs), but also a method to account

for the cost of those resources with respect to the center's operating environment.

Interestingly, the working group considered the possibility of a tool project being proposed with

supplemented resources. Resources brought in with a project could come from several places

and take various forms. For instance, an interest group of industry and/or user participants

might decide that a tool is important enough to sponsor its testing and evaluation in the center

through money, the donation of machines, or the allocation of personnel. Such direct support

goes to offsetting the costs of the tool project. It is also conceivable that there may be other

forms of indirect support proposed such as granting access temporarily to computing systems,

providing consultant services, certain "after tool completion" service, etc. Any form of

supplemented resources should be weighed in consideration of tool project acceptance.

The selection criteria identified so far focus on attributes of each individual proposal. In

addition, the center must consider broader criteria that examine each proposal in the context of

the overall effectiveness of the center and its ability to serve all of its customers. It makes no

sense for the center to support five different flavors of the same type of tool, even if they all

have their own important user communities. Through careful selection criteria, the center can

develop a strong "portfolio" of tools that covers the spectrum from writing code to tuning

performance. The center also needs to consider each decision in the light of how it will affect

the long-term survivability of the center itself. For the short-term, the center will certainly need

some quick wins to show it can deliver. However, for the long-run, the center must take on the

hard problems and show some big wins. Such strategic planning must be part of the selection

criteria.

Probably one of the trickiest issues for the selection criteria is avoiding competition with

industry. If a computer vendor or ISV decides to develop a particular tool that is closely related

to a tool proposed to the center (or worse, already under some level of hardening by the center)

tough decisions must be made to avoid running afoul of federal law. This situation likely

requires the center to be very public about projects even at the proposal stage. Detecting

potential conflicts early may avoid having to cancel a project already in progress and may

actually support the goal of helping move new technology into commercial products.

Conclusions

The discussions in this working group led to three specific types of conclusions. Much of the

actual time in the meetings centered on the basic question of what kind of role and charter for a

Software Tools Testing and Evaluation center might make sense and prove most valuable.

Significant skepticism was expressed about the value likely to be returned for expected high

cost of such a center. By the end of discussions, some of these concerns appeared to diminish;

however, the diversity of visions for a center produced by the different groups demonstrates the

need for a more refined and carefully defined vision for such a center. This working group's first

conclusion affirms the needs for this more precisely stated vision and charter. Based on its

deliberations, the group favors a broad charter that includes testing, evaluation, hardening,

documenting, and consulting (where specific decisions must be made as to which of these

activities is applied to each tool in the center).

Vendor involvement in the center turned out to be a very challenging problem. Ideally, one

would hope that tools produced by the center would be easily adopted by all of the vendors,

based on the center's ability to move valuable research ideas to hardened tools that everyone

would want to use. In reality, vendors cannot be viewed as a homogeneous group. They have

different policies, procedures, and driving forces that significantly influence their desire and

ability to support this ideal. This group's second conclusion is that vendor "involvement" for the

center needs to be encouraged throughout the process, but that expectations for results need

to be framed carefully. While vendors can and should participate, they should not be viewed as

the primary customer of the center. Commercial success of tools handled by the center should

not be the metric for project success. Instead, the group recommends that HPC application

developers be the primary customers of the center and their use of the tools be the key metric

for success. Moreover, if a tool is enthusiastically embraced by HPC application developers, it

may naturally find its way into commercial products rapidly.

Selection criteria for determining what activities the center might choose to undertake for

specific software tools generated the least debate in the working group. The criteria stressed

meeting anticipated users' needs, maximizing the likelihood of delivering the expected results,

and moving the state of the tools toward a more interoperable and effective software platform

for doing high performance computing. The working group's third key conclusion was that the

selection process involve all of the key players (users, researchers, vendors, and center staff)

and that individual tool decisions be made in the broader context of a long-range strategic plan

for software tool development and use. Once these high-level understandings become clear,

the selection criteria appear to fall out in a reasonable and natural fashion.

Intellectual Property Issues

 Working Group Members

 Introduction

 Why Intellectual Property (IP) Is Problematic for the Proposed center

 Alternative Models for the center and Their Implactions for IP

 Recommended Policies for Dealing with IP Issues

 Conclusions

Working

Group

Members

Intellectual Property Issues

 Donna Bergmark Cornell

 Frederica Darema DARPA

 Jeff Durachta IBM

 Anngie Johnson NASA

 Doug Kimelman IBM

 Tom Kitchens DOE

 Mike Koszykowski SNL

 Bart Miller Wisconsin

 Ken Miura Fujitsu

 Cherri Pancake, Chair Oregon

Introduction

A working group was convened to discuss the legal/ethical responsibilities, intellectual ownership,

and liability issues that would need to be addressed in establishing a national center for software

tools associated with high-performance computing (HPC). The group's members included

representatives from academic, industrial, and federal organizations involved in HPC. (One

participant, Frederica Darema, had participated in the HPSST task force where the concept of

such a center was first addressed.) A list of charter questions was furnished as a starting point for

the group's discussions.

This summary presents the general scope of deliberations over the three-day period. Rather than

following the chronological order topics were addressed, it groups the issues and

recommendations in terms of three major topics:

Why intellectual property (IP) is problematic for the proposed center

Alternative models for the center and their implications for IP

Recommended policies for dealing with IP issues

Why

Intellectual

Property is

Problematic

for the

Proposed

center

By its very nature, the concept of a national center implies issues with regard to multiple "owners"

of intellectual property. Regardless of the specific products to be delivered by the center, or the

specific processes by which they are delivered, at least one of the following conditions will apply:

the center adds value (e.g., through testing and refinement, additional

development, etc.) to software initially developed by individual(s) from

another institution,

the individuals collaborating on a project directed by the center include

employees of different organizations or institutions,

the ideas involved in a project are contributed by individuals employed

by multiple organizations, or

the result of a project is distributed, ported, or enhanced by some

organization other than the center.

That is, unless the center designs and develops products from scratch and performs all distribution

tasks, multiple organizations will have to be involved. Given the current climate for IP, that in turn

implies problematical issues of ownership and liability.

The center, as laid out in the plenary Workshop discussions, itself constitutes a multi-agency

effort, as it is likely to be funded by more than one HPCC agency. Currently, each agency imposes

its own set of IP requirements. An anecdote was supplied concerning a joint development effort

funded by DOE but involving two national laboratories. The project ultimately foundered because

the labs were managed by different contractors, who could not arrive at IP agreements - despite

pressure from their common funding agency. The Working Group concluded that it would be

extremely helpful to the whole concept of the center if the HPCC agencies could come to

agreement on the basic IP issues involved in jointly sponsored ventures (see Recommendations).

The group attempted to identify precedents, among recent efforts in the software development

community, for how the center's IP problems might be addressed. The National High-Performance

Computing Software Exchange (NHSE) sidesteps basic ownership issues by not distributing

software, but rather providing pointers to the original software owners; it essentially functions as a

clearinghouse. It was the consensus of the group that this model did not make sense for the

center, since it would essentially duplicate an existing effort. Instead, the center should provide

some type of output.

NASA's COSMIC effort provides Beta code in return for a nominal licensing agreement, allowing

others to test and even modify the software. If the software is taken to product status, however,

ownership (including any enhancements added by beta licensees) reverts to the original

developers and the licenses can be revoked. Similar examples were cited of companies releasing

(revocable) alpha source code, to obtain early reactions from users or in cases where there are no

immediate plans for further development of the software. As a precedent for the center, this

approach was considered too restrictive, since it would assume that all software would be

developed strictly in-house, rather than obtained from, or developed in collaboration with, other

groups.

We chose to view the overall process in very general form. The center would accept inputs from

some other community (e.g., academia), perform some development or enhancement activities,

and release some form of outputs to the user community and/or to the software industry for

productizing. In terms of the process inputs, basic IP questions arise:

Who designed and/or developed the inputs?

Can they prove (sole or joint) ownership?

Who indemnifies their work, and to what extent?

The outputs are also subject to some elementary issues of IP:

Who maintains ownership?

Who will be permitted to use it, and for what purposes?

Who will be permitted to redistribute it to other potential users?

Who will be permitted to derive new tools/environments from this work,

and under what constraints?

Who indemnifies the new work, and to what extent?

Specific ideas for dealing with these questions are outlined in later sections.

The group also considered this process from the viewpoint of liability. Here, it was felt that there

are a significant number of precedents establishing the desirability of disclaiming all liability with

regard to software correctness or appropriateness when applied to specific tasks. The fact that

multiple organizations might be involved does not appear to have particular impact, as long as the

center maintains appropriate disclaimers.

Another potential problem is the fact that individuals involved either in developing the inputs, or in

the center's own activities, might be privy to non-disclosure information from one or more vendors.

The group eventually decided that this was not, strictly speaking, a problem for the center; rather,

it was up to each individual to abide by the conditions of the non-disclosure agreements into which

he or she had entered.

The issue of "copyleft" was also of concern to the group. Under this type of agreement, the

adopter of a software component agrees that any time the new work is distributed, complete

source code will be made available. Although this does not entirely preclude distribution of

software in binary format, it does require that the software developer (in this case, the center)

guarantee that source is freely available. Copyleft can pollute the code, in the sense that it may

preclude combination of a tool prototype with certain third-party components (i.e., that put

restrictions on source code distribution). It may also make it impossible for companies to

commercialize the software.

Alternative

Models for the

center and

Their

Implications

for IP

As the plenary discussion of the proposed center had left some doubts about its precise role in the

development and hardening of software tools, the group spent some discussed several possible

models of operation. Where possible, individuals described precedents for the models and

indicated the IP issues that had been raised in each case. In all, five likely models were identified.

Each is described below, together with our conclusions about the ramifications for IP.

"Consumers' Union" Model

As discussed by the group, this model would constitute an independent review board to test and

evaluate software tools. Like the Consumers' Union, reviews would be made publicly available in

order to help users determine a priori whether or not a software tool was likely to be of help to

them. Two precedents were noted. First, NHSE had originally stated that objective reviews would

form an important part of their process. In fact, NHSE has served as a Web-based clearinghouse

for information, simply providing pointers to Web pages belonging to industry and research

developers, and occasionally serving as a distribution site for shareware. As was pointed out by

members of the group, NHSE's decision not to take a more active reviewing role was due largely

to IP problems.

Cited as a second precedent was the Parallel Tools Consortium's proposal for a related effort,

whereby users would contribute evaluations of current tools. Such evaluations would, theoretically,

help other users determine the probable usefulness in new situations. Again, a decision was made

not to pursue this project, because of liability problems.

The publishing of evaluation reports is fraught with difficulties of fairness and liability. This is

particularly troublesome for software, where there are no accepted standards objectively

measuring to what extent a product possessed "quality" or "usefulness". Nor can a new product

simply be compared with existing ones, if there is no consistent baseline set for comparison (as is

the case with software tools). Essentially, then, any evaluation can be criticized for lack of

objectivity.

Further, there is no established test suite against which to exercise tools. The precedent of the

Ada validation test suite was cited in this regard. It was noted that, in addition to the availability of

a general test suite, the Ada situation involved validation by an independent agency established

solely for this purpose. However, test results were not published per se; the public notification

simply indicated which compilers had been fully validated (but nothing about their relative

performance, nor even how many compilers had failed the tests).

The group concluded that while the experiences of a software tools center might eventually lead to

the possibility of establishing sufficient test suites and objective testing techniques, such an

approach was not really feasible at the present time.

Independent Testing center Model

Discussion of the Ada validation scheme led naturally to a model where software testing was

performed, but the results were kept private (other than perhaps a certification that some tool had

passed muster). In this case, tool developers - most likely those from industry - could pay a

membership fee or testing fee, submit their software, and receive complete reports as to where it

passed or failed the tests.

While the model could be self-sustaining financially, it was not clear to the group why a national

center was necessary. It was pointed out that in fact, some universities and centers already

function in this role, providing testing and evaluation services for a fee. Overall, the group felt that

the model offers little advantage to the HPC user community, since the tool developers are not

obligated in any way to apply the feedback in refining their product. Moreover, since test results

remain confidential, there is no real way to apply pressure for improving tools.

Standards Definition Model

Under this model, the primary role of the center would be to define and promulgate standards for

software tools. It was noted that currently, it is quite difficult to organize standards efforts and bring

them to fruition, since none of the HPCC funding agencies seems to view logistical and

administrative support for standards groups as being within their project domain.

While the working group thought that the availability of clearly formulated standards reflecting the

needs of the broad HPC community might go a long way to improving the tools situation, there

were two problems with this model. First, there is no clear indication that this role alone might

justify the establishing of a national center (since one agency for standards, ANSI, already exists,

even if its record with respect to software is somewhat weak). Second, this approach does not

really address the circumstance discussed in the plenary sessions: that new software tools are

being generated regularly within the tools research community, but they do not find their way into

general use or commercial production. The working group concluded that the role of standards

definition would be more likely to succeed if it were rolled into some broader role (the examples of

NHSE, Scalable I/O Initiative, and Parallel Tools Consortium were brought up).

Funding center Model

The group also discussed the role of a national center in financially sponsoring tool projects that

led to robust, distributable, and potentially commercializable products. Currently, funding agencies

support the initial research, and in some cases the development of an early distribution, but so-

called software capitalization is rare in the area of HPC tools. Such a role might enable the center

to expedite the deployment of tools into the user community.

The primary drawback to this model is the relationship of such a center to its own funding sources.

Existing agencies have established peer review mechanisms, and it is assumed that a center

would need to do the same thing. In that case, what real value-added would be supplied by the

center? As was pointed out by some group members, this arrangement would actually force the

HPCC agencies to relinquish some of their direct control over funded projects in software tools. It

was agreed that there would likely be problems in terms of both political pressure and prioritization

(if, for example, agency priorities did not align with those of the center). We recommended against

this model.

Software "Hardening" Model

The fifth model discussed by the group was a mechanism for "hardening" the prototype tools that

are already being produced by the research community. The center would accept proposals from

that community for projects to test research prototypes, make them more robust through code

reorganization, integrate them with other software on HPC platforms, perform tasks associated

with user documentation, and in general, convert the prototypes into software "products" that

would be distributable, usable, and maintainable.

Acceptance of software as input would be through a peer-review process involving other

researchers, users (who would assess likely impact of the tool on the user community), and

vendors (assessing likely interest for ultimate commercialization). It was assumed that such

prototypes would emanate from a variety of research projects at academic institutions, national

laboratories, federal centers, and possibly industry sites (e.g., research groups that have

developed software which will not be converted into products). center staff would perform the

"software distillation" in collaboration with the original developers, to take advantage of their

familiarity with the technology and existing code organization. In some cases, external

components - such as parsers or other code analysis modules - might be acquired by the center

as library components that could be shared among multiple software hardening projects.

The output of the center, then, would be distributable releases of software tools. The group felt that

the primary target audience should be the HPC user community; that is, that users should not

have to wait for industry to pick up and productize a tool before it can be used. Therefore, the

center would also fulfill a role of supporting and maintaining its output. In addition, the center would

attempt to feed its products into the software industry, entering into agreements with companies

that wish to create proprietary products. Finally, the center's public distributions might also lead

back into the hands of tool developers, who could base derivative works (e.g., more specialized

tools, problem-solving environment components, etc.) on the earlier releases.

This model exhibits all the problems associated with multi-party ownership of IP, but the group

also felt that it did the best job of responding to the objectives of the HPSST task force, as well as

guaranteeing impact on the HPC user community. The group then proceeded to discuss how IP

could be managed under such an organizational model.

Recommended

Policies for

Dealing with IP

Issues

The group formulated a number of recommendations for how liability and ownership issues should

be handled for a multi-agency center. They fall into the categories of: general policies, ownership,

liability, and ethics.

General Policies

The HPCC agencies should adopt consistent policies toward basic IP issues, in order to make joint

projects practicable.

The current situation, where each agency defines and manages its own IP process, leads to

confusion and in some cases can actually preclude collaborations among developers. Regardless

of whether or not a national center is established, we strongly recommend that attempts be made

to align the agencies' current practices, at least in the realm of multi-party projects. Such policies

should address the issues involved when other groups alter or extend previous work, as well as

development efforts that originally involved multiple parties.

The procedures and policies established by the center should make it possible to exploit multiple

outlets for center products, including the user community, commercial adopters, and tools

researchers.

While it might meet the objectives of the original HPSST task force to simply funnel robust tools to

HPC users, this imposes a long-term burden of maintenance and support on the center. This

should be the primary target, but IP policies should also make it possible for the center to

approach industry about tool commercialization. Finally, where appropriate, it should be possible

for other tool developers to acquire source code in order to extend, enhance, or integrate the

center's product into other tools and environments.

Given the generally poor understanding of IP issues among the tools research community, one

role of the center should be the dissemination of practical information to researchers on how they

should document ownership of software.

Ownership

1. In submitting a software project proposal to the center, the author(s) must furnish all relevant IP

information, including: (a) a clear ownership "audit" indicating all persons or agencies involved in

design or development, up to the point where software arrives at the center; and (b) any

restrictions on distribution that would be imposed by the submitters, their funding agencies, or

other authors whose work is included in the submitted software.

Proof of IP ownership will be necessary before the center can enter third-party agreements with

groups to commercialize the software. It may also be important in case of disputes over the origins

or ownership of software distributed to the user community or developers of derivative works.

Since distribution is the motivation for establishing the center in the first place, it simply does not

make sense to accept software whose ownership can be disputed.

Any restrictions whatsoever on software use - including licensing fees, mandatory registration or

tracking of users, royalties, copyleft, limitations on source code distribution, profit splits in the event

of future commercialization of the software, etc. - may hinder the center's ability to use the results

of projects. In general, we recommend that accepted software be free of any restrictions, although

there may be occasions where one or more of the software components are subject to some

conditions (see ownership profile).

If the submitted software makes use of components from other authors, these may be subject to

more stringent restrictions (in the case of copyleft, the software in which such a component is

embedded is also subject to restrictions). It may be desirable to eliminate such elements prior to

accepting the software as a center project.

2. Before accepting submitted software, the center will negotiate the specific conditions for transfer

of rights with the author(s).

Clearly, the most useful negotiated agreement would be for the center to have unlimited

redistribution (subject to export regulations, of course). However, since research prototypes often

make use of components furnished by other parties, some types of distribution or redistribution

may be precluded by agreements already in effect. Any limits that original authors or their

agencies will impose on redistribution, licensing, registration, etc., must be specified and agreed

upon at this point - prior to accepting the software as a center project (see ownership profile).

It should be made clear to the authors that no ownership agreement guarantees that the software

will be released, or if it is released, that it will be supported or maintained by the center for any

period of time.

3. Contracted staff should do all development work on center projects, so that ownership of new

code or interfaces resides with the center.

Such staff need not be permanent employees of the center, since work-for-hire still retains

ownership for the center.

4. If software components are acquired by the center from other sources, they will be subject to

similar considerations and procedures for managing ownership.

Certain key components (e.g., a parser) may be acquired from third parties, not for refining but for

use in other center projects. Such acquired components add a new thread of ownership and

require an ownership audit and negotiated transfer of rights (see ownership profile).

5. The center will require software submissions to be in source form although it may restrict

ultimate distribution to binary formats.

The issues are too complex if the center is not supplied with source, or if the original author

restricts the center's output to certain formats. Moreover, such arrangements are likely to preclude

commercialization agreements. In the case of third-party suppliers of components, however, the

center may agree not to distribute source code (see ownership profile).

6. The tools produced by the center will be distributed as licensed products in order to facilitate the

acquisition of information on usage and adoptions.

In general, the center should make use of the simplest licensing mechanism, "shrink-wrapped

licenses," for non-commercial use of its software (commercialization is discussed separately).

Tools that are hardware- or system-specific (e.g., those relying on information supplied by some

profilers or compiler code generation) may raise specific problems for distribution.

7. In some cases, the center may allow third parties to redistribute its products; such distribution

will be permitted for binary format only, and must involve no fees or special registration

procedures.

From the perspective of the user community, it would be desirable that computing centers (e.g.,

the NSF centers or national laboratories) be able to pre-build binaries for quick downloading. This

may also be to the center's advantage, since it might off-load user support functions. One

drawback is that the chain of user registration will be lost, as it is not feasible to require such users

to register "backward" to the level of the center (see ownership profile). However, re-distributors

will be asked to establish suitable mechanisms for tracking or estimating usage.

In some cases, the negotiated agreement with the original author may preclude such re-

distribution, or may impose additional restriction on how it may occur.

8. If a center product is released for commercialization, a separate agreement regarding

ownership will be negotiated with the new party.

It is reasonable to expect that the center might be able to recoup some of its costs by effectively

selling some of its ownership rights. In most cases, however, such sales should not force

discontinuance of the center's rights to distribute its product to the user community. That is, the

commercial product should be considered a "new tool," owned entirely by the commercial

developers, rather than a derivative work.

In some cases, the negotiated agreement with the original author may preclude commercialization,

or may impose additional restrictions on how it may occur. If a profit-split was specified in that

agreement, the original authors may need to be included in the price negotiations.

9. Derivative works based on center products will be permitted (subject to appropriate credits) and

may be distributed to any registered recipient of the original source work.

This is intended to apply primarily to center output that can be distributed in source format (see

ownership profile). If derivative use of binaries is to be permitted, special modification of the shrink-

wrap license may be required to specify how attribution of credit is to occur.

In some cases, the negotiated agreement with the original author may preclude derivative work, or

may impose additional restrictions on how such derivatives may be distributed.

Liability

1. In keeping with the current policies of most software vendors, the center will not accept liability

for defects in judgment, engineering, use, etc.

The now-familiar disclaimer of any responsibility whatsoever should be attached to all center

output.

Ethics

1. Acceptance of a prototype obligates the center to certain responsibilities toward the original

software developer(s).

In furnishing software to the center, the author is ceding direct control over its future, with the

expectation that it will be prepared for release to a broader user community. Consequently, the

center should periodically inform the author of the software's status. If a decision is made to drop a

project, the center is obligated to inform the author as to why, and all rights (including any value-

added) should revert to the author. If a decision is made to discontinue support of a completed,

distributed project, the center is obligated to inform not just the author (with similar reversion of

rights) but also the community of registered users, so that they have the opportunity to archive the

last available version prior to its disappearance from the center's inventory.

Conclusions

The group considered five alternatives for how a national center for software tools might operate,

in terms of the IP issues and problems associated with each. Only one model appears appropriate,

given the objectives of the original HPSST recommendations and the current national climate with

respect to IP ownership and liability.

The consensus was that it would be inadvisable to establish a center directed at testing the quality

of software tools and making the results available freely to the general public. The lack of widely

accepted testing and evaluation standards, and the associated liability issues, make it unlikely that

any institution or organization would be willing to stand as publisher of the results.

Restricting distribution of the test results to just the tool developers would eliminate most of those

problems. However, the group deprecated this model on the grounds that the potential benefits for

users would be seriously diminished, and that a private facility or consortium would be a more

appropriate vehicle. A model focusing on actual tool implementation was rejected as superfluous,

as this approach would replicate ongoing, peer-refereed programs by the HPCC agencies. A

fourth model, where the center's output would be definitions of standards for software tools, was

rejected as not meeting either the intent of the original HPSST task force or the needs of the tools

research community.

On the other hand, the group concluded that it would be possible to formulate IP policies that

would allow the center to follow a fifth model, that of software "distillation" or "hardening." The

center would acquire software in varying stages of development, refine and test it to ensure its

robustness and suitability for HPC, and release it (not just to the user community, but also to

potential adapters/extenders as well as commercializing groups). Examining this model, the group

formulated a series of recommendations on how such a process should be structured to deal with

IP issues. Due to growing concerns about software and its relationship to copyright and patent law,

it is essential that the center insist on strict documentary evidence of ownership before accepting

software from any development group, particularly when development involved multiple agencies.

Most other aspects of IP can be negotiated on a case-by-case basis, although clearly the ideal

situation would be software that the center can distribute or re-use freely, without the need for

cascaded licensing or other restrictions.

Nevertheless, the model presents some potential problems. For example, depending on rights

agreements, the center may accumulate an inventory of components, each with a pedigree and

new licensing agreements/restrictions. The licensing and ownership rights could end up being

extremely complex. Is this self-defeating? Most importantly, would this work against the primary

goal of getting tools into the hands of the user community (direct to users)? Another example is the

problem of what responsibility the center might have toward the groups that contribute software. If

long-term support and maintenance is expected, serious problems could arise when software

becomes outdated or is superseded.

In summary, the group felt that with a proper structure - and careful explanations to the tool

development community - a center could be an effective mechanism for expediting the deployment

of new tool technologies into the user and vendor communities. Special care, however, will have to

be taken to ensure that IP complexities do not undermine the center's effectiveness.

Charter Questions

What are the issues associated with the intellectual property right of

software tools that a Testing & Evaluation center will have to address?

What are some possible policies that such a center might put forward

to deal with these rights? How might they (the policies) be enforce so

that fairness for both the center and the developers is maintained?

Who owns what if a piece of software is first prototyped by an

academic, extended by the center, and integrated with vendor

software?

When are the decisions made and by what process?

At what point does something become a "new tool"? How long does

original ownership last?

To what extent is the T&E center responsible for claims concerning a

tool? Liable for errors in judgment or shortcomings in the T&E

procedures?

Technical Infrastructure for a National Software Tools

center

 Working Group Members

 Introduction

 Objectives and center Inputs

 Products of the center

 Project Selection

 center Characteristics

 center Resources

 center Staff Skills Mix

Working

Group

Members

Technical Infrastructure for a National Software Tools center

 Don Austin NCO

 Rod Oldehoeft DOE

 Dan Reed Illinois

 Thomas Sterling (Chair) Caltech

 John Toole NCO

 Bob Voigt NSF

Introduction

This working group addressed the technical infrastructure issues associated with the formation

of a national Software Tools center. Several working assumptions underlie the observations

and recommendations of this report:

Advances in parallel architectures have not been matched by the needed improvements

in software capabilities. As a result, applications development usually proceeds via

"heroic" efforts instead of normal development practices generally followed for software

on sequential, vector, or smaller-scale parallel machines.

In spite of the small niche occupied by truly high-performance computers, the

applications uniquely possible on these systems are extremely important for advancing

science, developing industrial competitiveness, and supporting defense needs. Hence

the software difficulties in this niche must be addressed as a national priority.

New approaches are being developed among the research communities in universities

and national laboratories for high-performance system and tool software. Often these

proofs-of-concept show exciting potential for improving the current situation. However,

these communities have primary responsibilities to their applications, or to software

research as opposed to production. The resulting software is often characterized as

rudimentary, brittle, poorly documented, and isolated from other software. As a result,

these are not widely adopted and, worse, are often re-invented for other sites and new

projects.

A National Software Tools center will be useful in providing the means for selected

experimental codes to be transformed to usable robust software tools. The initial codes

will be derived from research groups around the country. Multiple stages of maturity will

be specified and target codes identified for transition across successive stages. As

understanding of the potential value of each maturing tool grew through use of early

releases, additional resources will be applied to continue the advance, possibly to the

point of full commercialization. The nature and structure of such a center has yet to be

established.

This report documents the findings and recommendations from working group deliberations.

The following sections provide discussions about center objectives, the products from the

center, criteria for how projects may be selected, characteristics of the center, resources

required, and the recommended skills mix for center staff.

Objectives

and center

The purpose of the proposed National Software Tools center (referred from here on as "the

center") is to dramatically enhance the state and utility of high-performance computing through

increased availability of essential and advanced software tools. The term "tool" is applied here

in the broadest sense and refers to any software that extends the capability, usability, and

Inputs

efficiency of high-performance computing systems in the development and performance of end-

user applications. Such tools include but are not limited to compilers, run time systems,

operating system components, debuggers, performance profilers, and tools for data

management, scientific visualization, communication, fault management, and software

integration. The global vision behind the center is to provide the necessary infrastructure to

select appropriate software outputs from research projects and carry them forward to a form

suitable for use by the general HPC community. This includes the possibility of creating

software products not being addressed by any research groups. The center is not necessarily

to be a single location, but may engage talents at diverse geographical locations and across

administrative domains.

Activities at the proposed center will be driven by several inputs:

A major driver will be the early proof-of-concept codes from experimental projects in software

tools research. These may come from any cooperating research organization including

universities, national laboratories, other not-for-profit research institutes, and even computer

vendors. However, no source may impose proprietary considerations that would limit

availability of any center results to the general HPC community.

A second somewhat different source are prototypes of tools assembled by users where the

primary goal is the application, but where ad hoc efforts produced inchoate tools. This is an

example of a broader input source: requests, explicit or implicit, from the user community for

tools that satisfy recognized needs. This class of input may be source code or precise

functional specifications.

Finally, the center staff will also identify needs in-house that require development of new

tools. Here, only a specification instead of an initial test code is available at the outset of the

resulting project.

Products of

the center

The end products of the center will undoubtedly take on many forms, resulting from the

varieties of inputs, and the functionality desired. Therefore, a scale of intermediate products will

be supported by the center. While there is no intent to constrain the product types or the

degrees of robustness the center's products may have, there are some major identifiable

categories that typify the kinds of tools likely to be produced. These can be distinguished by

completeness or assumed reliability.

1. Early Evaluations

An initial but important product of the center is the early evaluation. The result is not usable

code, but instead a detailed critique of the merits of the concept, approach, implications, and

implementation methods exhibited in an early design or prototype. This is a formal process that

makes available to another group an objective and detailed assessment of a new project, and

its potential for addressing key problems within the HPC software tools arena. These

evaluations will be made available to the research groups involved to assist in guiding and

influencing direction at an early stage. Among other contributions, the center can alert

researchers to other work in the specific field they are pursuing and compare the intended

contribution with other efforts. This particular class of product from the center enables the

center to assess the potential merits of some future collaboration with the target research group

and project.

2. Improved Prototypes

Perhaps the single most important product of the center will be the improved prototypes of

research codes and tools. Indeed, this was the original idea that sparked the genesis of the

center and would alone justify its creation. The intent of the improved prototypes is to bring the

potential functionality of research experimental codes to a high enough level of reliability that

they can be used by a select "friendly" community to use and evaluate. The improved

prototypes, while not bullet-proof, will be expected to work as intended under most operational

circumstances. The center will modify and augment the original research tool until it reaches

center standards of quality for prototype release. Documentation for installation, interface, and

use will be an important element of the improved prototype. In addition, test cases will be

provided to end users to determine correct operation after installation. The center will provide

support, tracking and fixing bugs as reported in the field. The center will also establish, for each

improved prototype, a user evaluation and reporting database to collect assessments from

users. This information will determine future efforts towards further improvement, as well as

continued support. Many levels of "improvement" will be possible by the center, thus providing

flexibility in taking on new projects and meeting the needs of the community. This will permit

better use of center resources, allow more experimental tools to be engaged, and reduce the

necessary level of effort to moving a given prototype tool to the next stage of development. It

will be the responsibility of the center to establish a framework for defining these levels of

improvement and procedures for managing tool development through these successive

stages.

3. Reference Implementations

A few research software tools will prove to be of high enough quality and value that their widest

possible distribution will be imperative. Possible commercial implementation by major system

vendors or independent software vendors might be appropriate and the ultimate goal. To

support the commercialization as well as the early availability of such codes, a high level of

robustness, specification, and documentation will be achieved in a center product to provide a

reference implementation. A reference implementation is a self-defining specification of

functionality and interface as well as a fully operational tool. Users of reference

implementations of tools from the center can expect them to be of high enough quality to be

used on a production basis and can install them among their main software tools. Once a tool

has reached the level of reference implementation, additional changes to functionality will be

rare and will be reflected by controlled version numbers; this to retain uniformity of different

vendor implementations and manage user expectations.

4. Conventions and Standards

A major challenge to the software tools community has been the collection of commonality

characteristics that enable portability, interoperability, generality, and functional uniformity

including user interface. The unfortunate alternative is a collection of isolated and unrelated

tools unable to exploit the capabilities of others or, in ensemble, function as a higher-level

complex system. To support better code reuse and to enable tools that exploit other tools'

capabilities, a set of interface standards will be devised by the center to specify conventions for

interplay of tools. Tools crafted to comply with such standards will be more easily integrated

into a powerful and evolving ensemble. New tools will be fabricated more quickly because

developers may reuse existing and accessible functionality. Developers will realize a larger

immediate user base as the community more readily adopts compliant tools. Such a set of

conventions will expose gaps and opportunities for future advancement of capabilities in much

the same way that the Periodic Table, once incomplete, exposed plausible but undiscovered

chemical elements. The center, out of necessity, will develop conventions for interoperability of

the tools built in-house from research codes. De facto standards will sometimes be established

as guidelines to future development. These will be shared with the HPC community and, where

appropriate, used by the community in general.

5. Education

Even without specifying its characteristics, the center will clearly be well positioned to play a

role in education. It will surely provide instructional mechanisms and materials related to the

software with which it is involved. Beyond that, it may contribute material related to the

education of future computational scientists and users of high-performance computing systems

and tools. Possible forms are varied: tutorials for the use of HPC tools; curricular elements

developed with educational institutions for preparing future computational scientists; books and

other documents focused on this narrow but important field. Defining the exact role for the

center to play in education is a task for future inquiry.

Project

Selection

An important aspect of center operations is the actual selection of specific projects to be

undertaken, driven by the many opportunities provided by the research communities, and the

needs of the HPC user community. If successful, the center will have positive influence over the

evolution of HPC software tools, based on which projects it selects to advance by applying its

resources. This significant responsibility demands selection processes and criteria that both

represent and support the research and user communities. Criteria will unavoidably conflict,

and difficult choices for expending limited center resources are inevitable.

Among many possibilities, several criteria are identified for discussion here.

1. Strategic fit with center objectives

The objective of the center is to put the best tools of greatest importance into the hands of

users as rapidly as possible. Underlying any possible selection process is a basic center

strategy or model of what composes an effective software tool set. This is in turn driven by a

conception of the requirements and state of the art. Proposed projects which most closely fit

this model are more likely to be sponsored and actively pursued.

2. Potential impact

Within this conceptual framework, the potential short term and long term impact will be

assessed. A major driver of the selection process will be those factors that are expected to

deliver the greatest ultimate value to the research and user communities.

3. Innovation

Innovative concepts and approaches are critical for rapid advance in this emerging field. The

more radical or advanced the approach, the more likely it is to contribute to establishing new

paradigms for managing HPC system resources. However, innovation must be tempered with

practical considerations of utility and compatibility. Nevertheless, the benefits of novel tools may

outweigh the inconvenience and disruption to conventional but less productive user practices.

The most valuable tools will be those which provide new functionality that fill recognized needs,

but which complement and interoperate with the community's existing base of tools.

4. High quality of incoming software

The level of effort required will be a strong function of the quality of the original research code

to be enhanced. Where good software engineering practices were used in the development of

the initial experimental tool software, the likelihood of success, with lower center investment, is

enhanced. Conversely, a large morass of undocumented spaghetti code would require much

more center effort, and so is less likely to be selected. Level-of-effort concerns also favor small,

modular projects instead of grandiose "we've solved the whole problem" projects. In part, the

conciseness of the project objective is likely to be reflected in well-crafted codes instead of

huge software dreadnoughts.

5. Maturity of prototypes

Of course, level of effort will also be sensitive to the degree of the work already achieved by the

originating research group. The more advanced the effort, the easier it will be for the center to

transform it into a robust prototype. Further, the confidence in capabilities and potential impact

for an advanced project is enhanced, which can make selection more likely. More mature codes

will have had more extensive use and evaluation, the results of which will influence the review

and selection process. Codes capable of strong and rich demonstrations will be favored over

early breadboard codes that have been exercised in limited ways.

Naturally, there must be a balance here. It can not be the unintentioned implication of the

selection process that research groups are forced to do the job that the center was established

for in the first place. But where choices must be made, those projects most likely to lead to

success for the HPC user community can be expected to be favored. That includes the

confidence and level of effort in the project, both of which will be influenced by degree of

completeness of the original research tools code.

6. Potential for fruitful interaction with producer groups

It will not be practical for center staff to be fully versed in every detail of the initial research

code. Its quality must in part be surmised from knowledge of the originating research group and

its past accomplishments and products. This may appear to favor the well-established and

better-funded research groups, which is certainly not the desired outcome. It is, however,

reasonable to favor projects from groups with strong and productive track records. As graduate

students and postdoctoral researchers from successful groups diffuse throughout the broader

community, their reputation will follow them to raise the standards across the domain. A long

term consequence of this necessary bias is that the standards of code quality will rise not a bad

thing in the long run.

These criteria have differing weights when applied to the several classes of center products.

The objective of Early Evaluation projects is to accelerate the advance of innovative ideas in

constructive directions. The focus will be on inchoate projects which may have less

experimental code to demonstrate but novel yet solid concepts to present. The low level of

effort required by the center to assess the merits and provide constructive recommendations

means that the selection criteria will be more heavily weighted toward potential importance as

well as quality of documentation than toward other criteria. It also provides an early look at a

particular project at a time when direction may be strongly influenced. Any project that has

gone through this process is more likely to be selected at a future time as a target to improve

the early prototype by the center, as it will more likely reflect the center's basic model.

Projects selected for developing Improved Prototypes will be subject to additional

considerations, including the continued participation of the producers. A close relationship

between the developers and the center is essential for successful technology transfer to the

center. The complexities of incompletely documented, highly experimental code will make code

understanding dependent on tight collaboration with the producing group. If such a relationship

is not feasible, the project will be less attractive as a target for prototype improvement.

Another factor in the decision will be the kind and degree of improvement necessary to bring

the code to the next stage of utility. This, combined with its potential impact related to

functionality, will determine how quickly a new useful tool can be brought to the community.

Reference Implementation projects will be selected according to the criteria presented above,

but include additional factors associated with the likelihood of vendor participation. The value of

a reference implementation is in a de facto standard of functionality, so that vendor

implementations will achieve identical interface, interoperability, and equivalent behavior.

Robustness, completeness, internal consistency and specification documentation are critical

characteristics of a center project intended to serve this role. The significance of the

responsibility implied by these requirements dictates that a high level of effort will be required

by the center. Few such projects are anticipated, and certainly no more than two of them is

expected to be engaged concurrently by the center. Therefore, selection will be stringent and

depend on a high probability of success. A key component to that will be the participation of the

vendor community in its evaluation and endorsement of the end product. One or more vendors

will be required, a priori, to show strong willingness to consider internal advanced development

and product distribution if the project is to be undertaken by the center. This will mean that the

contribution to be made by releasing the reference implementation is clear and compelling.

Such evidence will come from use by parts of the community of earlier advanced prototypes of

the research code previously developed and released by the center. Additional issues of

ownership and reference version control must also be resolved before project initiation.

Standards and Conventions are of a different nature than the other center product types. These

are frameworks or conceptual infrastructure that enable software tools communities and their

products to work together and to provide a necessary level of stability to the end user

community. Selection of efforts to establish such standards or conventions will be derived from

perceived need both within the center and by the community. They will emerge, sometimes

unintentionally, as a natural consequence of just trying to get the center's jobs done.

Selection will involve a mix of contributors. The primary and final decisions will be made by

center management. An external advisory board will be established from representatives of the

sponsoring agencies and the HPC community. This continuing body will advise on all selections

made, especially in establishing priorities and tradeoff criteria. Vendor representatives will be

consulted for selection of projects to develop reference implementations or standards. The

selection decision process will involve two stages: merit for selection, and priority for resources.

The first stage judges the candidate project on its own intellectual and functional merits. The

second stage determines its competitiveness relative to other potential projects and finite

center resources.

center

Characte-

A close relationship with the HPC tool developing and using communities is crucial to the

center's success in advancing the state of software tools and high-performance computing.

Access to external talents in both domains is critical to extending the effective capabilities of the

center beyond those encompassed by the immediate center R&D staff. Hence the center

ristics

should be co-located at a national HPC host site such as a DOE national lab, an NSF

supercomputer center, or a NASA center with strong computational programs. Another reason

for establishing the center in such a context is the availability of several large computing

systems, and the presence of an independently maintained infrastructure. Thus immediate and

easy access to end users, expertise, and resources strongly supports hosting the center at an

established HPC institution.

While the center will be co-located at an HPC host site, it must be independent of the hosting

institution with regards to management authority and mission direction. The center will not be

perceived to be owned or unduly influenced by the host. Rather, the relationship can exploit the

potential synergism through mutual exchange of ideas, talents, and resources. The center will

reimburse the host site for use of its facilities. Participation in center activities by host site

personnel will be arranged on a case-by-case basis and will most likely be unfunded

collaborations.

While a single centrally located monolithic organization is one possible form of the center,

several considerations lead to an alternate form being adopted. Access to a diversity of HPC

platforms is less likely to be achieved at a single site than at a collection of separate sites. For

example, the NSF Supercomputer centers collectively provide access to several types of

machines among them. Computational centers often tend to focus on specific classes of

application most closely associated with the mission of its sponsoring agency. For example, the

DOE national labs and the NASA centers involved in high-performance computing are engaged

in distinct applications, although many of the underlying algorithmic principles overlap. Finally,

the best talents in system software are found among several organizations, not in one place.

For these reasons, the center will take on less of a form of a "center of Excellence" in favor of a

structure more like a "Circle of Excellence" by distributing the center organization across

several geographical sites. It is proposed that the center comprise three or four distinct but

strongly coordinated sub-centers, each located at a separate location and host site. This will

give access to a diversity of resources, talents, and user requirements, as well as help better

focus on the distinct missions of the multiple sponsoring federal agencies.

Of the three or four sub-centers, one will take on the additional responsibilities of administrative

and coordinating duties as well as operating as interface to the external sponsoring agencies.

However, all sub-centers will engage in the technical process of selection and execution of

center projects. Each sub-center will be managed by a center deputy director with a center

director having general responsibility for the ensemble. Projects will usually be allocated to a

specific sub-center instead of attempting to distribute the workload across sub-centers at a finer

granularity. Proximity of co-workers leads to rapid progress and serendipitous discovery.

Matching of project to sub-center will be determined by several factors including workload,

relevant talents and resources, and possible proximity to the producing research group. Other

issues may come into play as well on a case-by-case basis.

center

Resources

The focus of the work of the center is the development, enhancement, and testing of innovative

software tools for high-performance computing, so this perforce involves use of high-

performance computers. Because the tools under development will often be dangerously shaky

or interface with low level mechanisms buried deep within operating system kernels or device

drivers, direct and full access to, as well as control of, HPC systems will be required. At the

same time, access to large systems will be essential to verify correct operation at scale and to

determine scaling properties. While generous funding by sponsoring agencies is anticipated for

center functions, it would be impossible and inappropriate for funds to be expended on one of

every kind of HPC machine in its largest possible configuration.

This conflict of needs and realities will be satisfied by a mix of small, program development

systems being acquired and placed at the sub-center sites for exclusive use by center technical

personnel. These development systems will not be expected to provide a robust and

uninterrupted user environment, but can be the target of disrupting low level system software

and tools development efforts. It is expected that each of the major vendor platforms will be

represented by one of the sub-center development systems. No two sub-centers is expected to

have the same class of development system and therefore a means of distributed sharing

across the center is essential. Such mechanisms and system administration issues to make this

both possible and easy to use must be established by center management.

The need for access to large configurations of HPC platforms will be satisfied by the host sites.

Each such site will be selected in part for its large high-performance computing facilities. The

locations of the sub-centers will chosen to maximize the diversity and size of the host systems

available. Although the small development systems will incur most of the down time resulting

from the experimental development and testing cycle, there will be periodic requirements for the

entire host site system to be made available to center project teams. Support by the host site of

such intrusive activities will be an important criterion in site selection for sub-centers.

In addition to the small development HPC platforms, the center and its constituent sub-centers

will own several other computing resources to enable their missions. A heterogeneous

collection of workstations will be procured and updated over time. These workstations are

necessary both to support the day-to-day computing requirements of the personnel and to

provide test platforms for code under development. Many software tools engage both HPC

systems and user workstations, sometimes in complex ways. Occasionally, software tools may

interact with proprietary products of specific workstation vendors. Graphical user interfaces

(GUI) to HPC software tools are usually executed on user workstations. Also, an important

class of high-performance computing systems is "clustered computing" using ensembles of

loosely coupled workstation-class systems. Thus an important and integral element of the sub-

center environment will be its rich collection of workstations.

Other important support resources include a high-bandwidth network, file servers, backing store

(tertiary storage), printers, and Internet connection. To some degree, the sub-centers may be a

customer of the host site resources to partly satisfy these requirements. In other cases, the

sub-center is likely to own the resources it uses. These decisions will be made on a case-by-

case basis. For example, it is anticipated that the sub-centers will have large data storage

requirements for handling data sets resulting from software experiments and other aspects of

center operation. This requirements may be best satisfied by center ownership.

Besides substantial and diverse hardware resources, center objectives require a substantial

base of software resources as well. Commercially available software development tools will be

an essential component of the software base both for direct use by developers and as targets

for interoperability of experimental tools under development. Source code for target machine

operating systems and compilers will be critical for providing direct access to low level

functionality in the support environment. Mechanisms for accessing protected resources, such

as hardware counters, are essential for development of certain types of tools.

Finally, each sub-center must be independent in meeting its daily operational requirements.

This implies the need for full environmental support for managing paper work, organizing

meetings, presenting material, and providing the usual personnel support functions.

Administrative and secretarial resources must be provided in sufficient quality and quantity that

technical staff are not distracted from their principal occupations.

center Staff

Skills Mix

Management of the center will be limited to essential functions for directing the processes of

the center, administrative and logistical support, and interfacing with the HPC community and

host sites. Overall center management will be provided by the center Director, who will be

primarily responsible for coordinating with the center Advisory/Steering Committee, establishing

direction and procedures, and maintaining relations with sponsoring agencies. The center

Director will also make all final decisions about new project starts and continuation of on-going

projects. However, these decisions will be made in consultation with the review process of the

center Advisory/Steering committee and based on recommendations of the center technical

staff. Every sub-center will be under the direction of its Deputy Director, who will be responsible

for the operation of the sub-center, relationship with the host site, and the progress and quality

of the projects. The Deputy Director will be supported by the Chief Administrator and the Chief

Scientist of the sub-center. The Chief Administrator will manage the administrative support staff

and all budgets. The Chief Scientist will oversee all technical projects of the sub-center as well

as conduct specific projects.

The principle function of the sub-center will be the development and enhancements of HPC

software tools; this will be carried out by the sub-center technical staff. At least 50% of all

personnel will comprise the technical staff. A mix of expertise and capabilities will be

represented by the permanent technical staff. Such backgrounds will include operating

systems, compilers, GUIs, scientific visualization, evaluation and instrumentation,

computational science, parallel application programming, and modern software development

practices. Projects will be conducted by teams of members of the technical staff. Each project

will be directed by a team leader who will be dedicated to that task. However, while most

members of the team will be focused on the single task as well, individuals with specific talents

critical to more than one project may be shared, workload permitting. It is paramount that all

members of technical staff be well versed in modern software practices. Training in this area

may be required and provided for new hires.

Staff will be necessary to provide important support services. This goes well beyond the typical

secretarial support ordinarily found in any organization. Because of the importance of the

complex computing facilities accessible from the sub-center, substantial systems administration

personnel will be located at every sub-center. These people will be challenged by the

conflicting needs of providing robust capabilities while making systems available for risky

experiments likely to cause individual systems to fail while under test. The center will be

responsible to the user community for the software tools it releases. A permanent and well-

staffed user help desk will be supported by each sub-center to maintain the software tools and

provide advice to users. The user help desk will interface to the user community for managing

all bug reports and providing rapid response when possible. These staff will constantly be

learning new tools as they are developed and will work with the technical staff as software tools

are being readied for release as advanced prototypes. Documentation is essential for

conveying functionality, interface requirements, and means of use of new software tools. The

sub-centers will include permanent technical writers on staff who will work closely with code

developers to provide the necessary documentation to the user community. The center,

although not every sub-center, will engage the services of legal counsel on a continuing basis

to deal with issues of ownership and liability related to experimental software tools.

A significant number of people at a sub-center at any particular time will be visitors, for several

reasons related to the objectives of the center. Users from other institutions will visit to convey

needs and to assess the merits of emerging software tools. Original developers from other

groups whose codes have been selected for center projects will be on-site to help in technology

transfer both for explaining the details of their code and in receiving critique related to the

merits of their codes. Consultants with specific expertise necessary for a given project will be

housed at the sub-center. Representatives from industry and vendors will be on-site to work

with tools developers, especially in the case of reference implementations. Students,

postdoctoral researchers, and faculty on sabbatical will be important visitors to enrich and

diversify the interests and capabilities of the center community.

Technical Issues – Debugging

 Working Group Members

 General Discussion

 Recommendations

 High Performance Debugging Standards Forum

Working

Group

Members

Technical Issues -- Debugging

 Gail Alverson Tera

 Jeffrey Brown LANL

 Karla Callahan Intel

 Suresh Damodaran-Kamal Hewlett-Packard

 Erica Dorenkamp Thinking Machines

 Joan Francioni (Chair) SW Louisiana

 Mike Gittings LANL

 Kenneth Koch LANL

 David Metcalfe SGI/Cray

 Juan Meza SNL

 Lauren Smith NSA

 Rich Title Hewlett-Packard

 Abduhl Waheed Michigan State

Introduction

This working group was given the task of discussing issues related to debugging,

testing and verifying the correctness of paral lel programs used in the high

performance computing arena, and making recommendations along these lines with

respect to the role of a national tools center. In particular, the group was asked

"What should be the role of a tools center to encourage the development and

accelerate the deployment of high quality parallel debuggers for high performance

computing?" This document summarizes the group's responses to that question.

General

Discussion

The goals of an effective debugging tool for high performance computing are for the

tool to be useful in helping users find out what they need to know to understand and

debug their programs, and also for it to be portable, extensible, scalable, and easy to

use. The debugging community has yet to come up with one debugger that meets all

of these goals. This is not because the goals are not understood. Rather, it is

because debugging tools are very complex pieces of code that must be written to run

on a specific machine with a specific compiler and under a specific operating system.

As these three components are constantly changing in the high performance

computing arena, it has been difficult for researchers and vendors to have access to

stable platforms long enough to be able to develop appropriate tools. Also, there are

no accepted standards about what debuggers should do nor about what

compilers/operating systems should provide to the debugging program. This greatly

increases the complexity of writing a debugger from scratch for each new system.

The problems users are experiencing with current tools range from nonstandard

semantics of the commands (e.g., breakpoint and next) - to confusing screens full of

too many windows - to an inability to do the things they need done. The effort

required to learn a new tool has also frequently turned out to be a problem for users.

It is not cost effective for a user to spend a large amount of time learning a new tool

for a platform that may not be in existence for very long or for a tool that is not very

useful. In addition to these types of problems, both users and developers cite the

lack of user experimentation and input for tools under development as a serious

impediment to building useful debugging tools.

Recommenda-

tions

The working group considered the overall purpose of a tools center to be two-fold:

(1) to support the development of useful technologies and research ideas; and (2) to

support the promotion of effective tools back to the user community. To this end, five

goals for the center were defined. These goals are listed below along with possible

functions a tools center could facilitate. In some cases, functions appear listed under

more than one goal.

1. Increase understanding of the needs of both users and developers from each

other.

There is a definite lack of communication between users and tool developers that

has been hard to overcome. The need for this communication is well accepted, but

many strategies used in the past have been less than successful for a large number

of tool development efforts. The PTOOLS consortium is definitely attacking this

problem, but more can be done. Possible functions for a center related to this goal

include education programs/workshops, usability testing, developing and promoting

standards, and establishing mechanisms for user feedback of tools throughout their

development.

2. Support proof of concept for promising but immature research software and ideas.

A good debugging research idea can easily be prototyped, written up and published,

but that doesn't tell us enough about how the tool/idea will work "in the field."

Conversely, most academic researchers do not have the resources to develop full-

blown, robust software to test out their theories on a large slate of real applications

and/or with a group of real users. Thus, achieving this goal requires identifying

"promising" software via early evaluation of research ideas and then providing

support to further develop the software so that it is robust enough to go through

usability testing. Related functions would include porting the code to other platforms

and developing a base of code building blocks for constructing prototypes quickly.

3. Facilitate testing and evaluation of tools.

For both vendors and academic researchers, having access to the large/realistic

systems that the users actually use has been a problem, particularly in the testing

and evaluation phases of tool development. In addition, there is no accepted suite of

programs that can be used for testing the functionality and performance of

debugging tools. Functions which could be provided by a center related to this goal

include usability testing, developing and promoting standards, and scalability testing.

It would also be appropriate for the center to develop a test suite and a set of

benchmark programs for evaluating new tools.

4. Reduce effort needed for academic and vendor developers to create usable tools.

This goal is about establishing an effective mechanism for getting user feedback and

input to developers at appropriate stages of a tool's development. It includes the

functions of developing and promoting standards, usability testing, scalability testing,

developing benchmark programs, and establishing a code base.

5. Support useful tool base for user community.

The intent is not for a center to compete with system vendors or independent

software vendors. Rather the goal is to help establish a critical mass of users for

effective tools. Once a useful tool has enough dedicated users, it can then be

supported by the vendors. (We consider a recent example of this model to be the

development of PVM.) In particular, a tool would only be supported by the center for

a finite amount of time. If it fails to be picked up by vendors by that time, it would be

dropped. Possible functions in this category include usability testing, benchmark

programs making tools more robust, and porting code to multiple platforms.

A common thread during our discussions, and reflected above in the function lists of

each of the goals, is the need for usability testing by a representative group of real

users. This is considered a critical function for making any headway in developing

useful and cost effective debugging tools. In addition, user testing should be done

early and repeated throughout the entire development of a tool. Although this is a

critical function, it is not an easy thing to accomplish, especially in an ad hoc manner.

Users are busy working on their own problems and it is not considered part of their

job to spend a large amount of time testing out new debugging tools. Tool

developers frequently do not have enough connections with a wide audience of

users to get appropriate input and feedback throughout the development of a tool. A

nationally funded center, however, should be able to set up and support a

mechanism that will allow real users to try out different tools and provide expert

guidance back to the developers so that the developers can spend their efforts on

designing effective and useful tools.

The tools center that is developed may address some subset of the five goals listed

above. Within our working group, the users were interested in all goals being met,

the vendors primarily supported 1 through 4, and the academics were most

interested in 1 through 3.

After defining the above set of goals for a center, the working group discussed how

these goals might be met outside of a tools center. A number of alternatives were

suggested that included the following. Workshops, such as this one, certainly support

goal 1 and could be increased. A High Performance Debugging Standards Forum

could be established (see below) to support goals 1, 3, and 4. More support could be

given to facilitate academic researchers spending summer or sabbatical terms at

vendor or user sites. This would support goals 1 and 3. The mechanisms in place by

funding agencies partially support goal 2, but research funding stops short of the

work needed to make tools ready for usability testing. This could be changed

somewhat, but it is not necessarily of interest or even appropriate for researchers to

do all the detail work necessary to bring a tool far enough along for wide usability

testing (i.e., different programming models, architectures, applications, etc.). Finally,

it was suggested that a vendor consortium could be established to share ideas and

common components, thereby supporting goal 4.

High

Performance

Debugging

Standards

Forum

As a direct result of the discussions of this working group, a Birds-of-a-Feather

session was held at Supercomputing '96 to explore the community interest in

beginning a formal debugging standards effort. It was decided at that session to go

ahead with this effort and plans are underway to have a first formal meeting in March

in conjunction with the SIAM conference. A steering committee for the forum has

been created and consists of Jeffery Brown, Joan Francioni, and Cherri Pancake. In

addition, funding for the initial efforts of the forum is close to being secured.

